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The recent discovery of higher-order topological insulators (TIs) has opened new possibilities in
the search for novel topological materials and metamaterials. Second-order TIs have been
implemented in two-dimensional (2D) systems exhibiting topological “corner states,” as well as
three-dimensional (3D) systems having one-dimensional (1D) topological “hinge states.” Third-order
TIs, which have topological states three dimensions lower than the bulk (which must thus be 3D or
higher), have not yet been reported. Here, we describe the realization of a third-order TI in an
anisotropic diamond-lattice acoustic metamaterial. The bulk acoustic band structure has nontrivial
topology characterized by quantized Wannier centers. By direct acoustic measurement, we observe
corner states at two corners of a rhombohedronlike structure, as predicted by the quantized Wannier
centers. This work extends topological corner states from 2D to 3D, and may find applications in
novel acoustic devices.
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Higher-order TIs [1–20] are a new class of topological
materials supporting a generalization of the bulk-boun-
dary correspondence principle, in which topological
states are guaranteed to exist along boundaries two or
more dimensions lower than that of the bulk [1–5]. In
standard TIs, topological edge states occur at one lower
dimension than the bulk [21,22]; for instance, a quantum
Hall insulator has a 2D bulk and topological states on 1D
edges. Such 1D edge states have also been demonstrated
in a few classical analogs [23,24]. By contrast, a 2D
second-order TI supports zero-dimensional (0D) topo-
logical “corner states.” Such a lattice was first devised
based on quantized quadrupole moments [1,2] and
quickly realized in mechanical [6], electromagnetic [7],
and electrical [9] metamaterials. Later, another type of 2D
second-order TI based on quantized Wannier centers was
proposed [25–27] and demonstrated in acoustic metama-
terials [10,11]. In 3D materials, second-order TI behavior
has been observed in the form of 1D topological “hinge
states” in bismuth [20].
According to theoretical predictions, TIs of arbitrarily

high order are possible. However, in real materials the bulk
is at most 3D. Thus, barring the use of synthetic dimensions
[28,29], the only remaining class of high-order TI is a third-
order TI with 3D bulk and 0D corner states. As of this
writing, no such material has been reported in the literature,
although there exists a theoretical proposal based on
quantized octupole moments [1,2].

Here, we realize a third-order TI in a 3D acoustic
metamaterial, observing topological states at the corners
of a rhombohedron-like sample. This third-order TI is
based on the extension of Wannier-type second-order TIs
to three dimensions [25,27], and can be regarded as a 3D
generalization of the classic 1D Su-Schrieffer-Heeger
(SSH) model [30]. Just as in the SSH case, the eigen-
mode polarizations are quantized by lattice symmetries,
and the Wannier centers are pinned to high-symmetry
points; the mismatch between the Wannier centers and
lattice truncations gives rise to charge fractionalization
and hence lower-dimensional topological boundary states
[25,27]. This mechanism has previously been used to
implement second-order TIs in acoustic kagome latti-
ces [10,11].
The acoustic metamaterial is based on an anisotropic

diamond lattice, with cubic unit cell shown in Fig. 1(a).
The lattice constant is a=

ffiffiffi
2

p
and the three primitive

lattice vectors are a1 ¼ ða=2; a=2; 0Þ, a2 ¼ ð0; a=2; a=2Þ,
a3 ¼ ða=2; 0; a=2Þ, where a is the side length of the cubic
cell. The two sublattice atoms are located at (0, 0, 0) and
(a=4, a=4, a=4). There are two sets of nearest-neighbor
couplings. The couplings along [111] [plotted in red in
Fig. 1(a)] have strength t2, and those along other directions
(plotted in blue) have strength t1. The theoretical tight-
binding analysis of this lattice has been performed by
Ezawa [27], who showed that when jt1=t2j < 1=3,
the lattice is a higher-order TI of the Wannier type.
The Wannier center is located at (Px, Py, Pz), where
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the polarization along each direction is given by
Pi ¼ −ð1=VÞR BZAid3k, with V being the volume of the
first Brillouin zone and Ai ¼ −ihψ j∂ki jψi being the Berry
connection of the lowest band. For jt1=t2j < 1=3, the
Wannier centers are fixed at (1=2, 1=2, 1=2), corresponding
to the centers of the red bonds in Fig. 1(a) (see
Supplemental Material A [31] for tight-binding calcula-
tions). Thus, when cutting through these bonds to form a
finite sample, fractional charges reside at the boundaries,
similar to the SSH chain [30] and its previously studied 2D
generalizations [25–27]. In the present 3D case, the same
principle predicts the existence of topological states at
certain corners, as well as the existence of surface states on
certain 2D surfaces of the sample.
We now implement an acoustic metamaterial realiza-

tion of the above tight-binding model using coupled
acoustic resonators [32–36], as shown in Fig. 1(b). The
two identical thick cylindrical resonators correspond to
the two sublattice atoms in Fig. 1(a), connected and
coupled by other thinner cylindrical waveguides. The
entire structure is filled with air, and the walls are
regarded as hard boundaries. The three lattice vectors
are the same as in the tight-binding model of Fig. 1(a),

with a ¼ 175 mm. The height (H) and radius (r) of each
cylindrical resonator are 60 and 20 mm, respectively. For
these parameters, a single cylindrical resonator supports
the mode of interest at 2883.3 Hz, whose profile is
shown in Fig. 1(c). The two sets of coupling strength are
realized by tuning the radius of the connecting wave-
guides. The larger connecting waveguides, with radius
rc2, correspond to t2 bonds in Fig. 1(a); the others, with
radius rc1, correspond to t1 bonds. All connecting
waveguides are located at h ¼ 8.125 mm, measured from
either the top or bottom of each resonator, as indicated in
Fig. 1(b).
When rc1 ¼ rc2 (i.e., t1 ¼ t2), the bulk band structure

exhibits nodal lines [Fig. 1(e), red curve; see Fig. 1(d) for
the 3D Brillouin zone] [27,37]. The higher-order TI phase
(jt1=t2j < 1=3) is achieved by tuning the radii of the
connecting waveguides. The blue curve in Fig. 1(e) shows
the simulated bulk band structure for rc1 ¼ 2 and
rc2 ¼ 7.8 mm, which has a band gap between the two
bands. By fitting simulated dispersions with the tight-
binding calculation, t1=t2 is estimated as 0.076 (see
Supplemental Material A [31]), indicating that the system
is in the higher-order TI phase.

(a)

(d) (e)

(b) (c)

FIG. 1. Structure and bulk dispersion of acoustic anisotropic diamond lattice. (a) Schematic of the cubic cell of an anisotropic diamond
lattice. Red (blue) bonds indicate couplings with strength t2ð1Þ. (b) The unit cell of the acoustic anisotropic diamond lattice. All
parameter values are given in the main text. (c) Acoustic pressure profile for the resonator eigenmode of interest in this work. (d) The
first Brillouin zone of the anisotropic diamond lattice. (e) Simulated bulk bands of acoustic anisotropic diamond lattice shown in (b).
Red curves show the band structure for drc ¼ 0 mm (rc1 ¼ rc2 ¼ 4.9 mm), and blue curves show the band structure for drc ¼ 5.8 mm
(rc1 ¼ 2 and rc2 ¼ 7.8 mm), where drc ¼ rc2 − rc1.
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A third-order TI is characterized by the existence of
topological corner states at certain corners of a finite 3D
sample. We consider a rhombohedronlike structure
[Fig. 2(a)] containing six rhombus-shaped surfaces [see
Fig. 2(b) for the (1̄ 1̄ 1Þ surface]. Each surface constitutes a
finite anisotropic honeycomb lattice and can be regarded as
a second-order TI [27]. Corner states should occur at the
two corner resonators, labeled “A” and “B” in Fig. 2(a),
because all atoms are connected to red bonds (where the
Wannier centers lie) except those at A and B. To check this
prediction, we perform acoustic simulations on a structure
containing 52 resonators, shown in Figs. 2(d)–2(e). The
results, shown in Fig. 2(c), reveal two in-gap modes at
around 2891 Hz, between the upper bulk band around
3000 Hz and the lower bulk band around 2800 Hz. The
eigenmode patterns, plotted in Figs. 2(d)–2(e), reveal that
the acoustic pressure is highly concentrated on the two
corners, verifying the existence of the third-order topo-
logical boundary states.

To experimentally demonstrate this phenomenon, we
fabricate a sample [see Fig. 2(f)] through stereo-lithography
3D printing, with the same parameters as in the preceding
simulations. We identify the extents of the upper and lower
bulk bands by measuring bulk transmission through two
resonators labeled “C” and “D” in Fig. 2(a). As shown in
Fig. 3(a), the spectrum exhibits two clear peaks corre-
sponding to the upper and lower bulk bands. Next, we
measure the local acoustic response at the two corner
resonators, A and B (see Supplemental Material D for
details [31]). For both resonators, we observe a peak at
around 2900 Hz, corresponding to the corner states (see
Supplemental Material B regarding the robustness of these
corner states [31]). From the measured spectra shown in
Fig. 3(b), the quality factor of the corner states is around 60,
similar to the quality factor for an isolated resonator. The
main loss channels are material absorption and leakage
from the small holes used for excitation and detection
(see Supplemental Material E [31]). Finally, we repeat
the acoustic response measurement for all resonators,

(a) (b) (c)

(d) (e) (f)

FIG. 2. Topological corner states on a rhombohedronlike sample. (a) Schematic of the rhombohedronlike structure. (b) (1̄ 1̄ 1Þ surface
atoms of the structure shown in (a). (c) Simulated eigenfrequencies of the finite acoustic lattice. Black and red dots represent
bulk and corner states, respectively. (d),(e) Simulated eigenmode profiles of the two corner states. (f) Photograph of the fabri-
cated rhombohedronlike sample containing 52 resonators. The inset shows an enlarged view of a resonator with one stopper
removed.
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constructing an intensity map of the lattice equivalent to the
local density of states. The results of these measurements,
conducted at the peak frequency of the corner resonances
(2900 Hz), are plotted in Figs. 3(c)–3(d) from different
view angles. The acoustic pressure is indeed highly con-
centrated at the two relevant corners, with negligible
response at the bulk sites, along the 2D surfaces or 1D
corners, or at sample corners not corresponding to divided
Wannier centers.
It is important to note that no 2D or 1D surface states are

observed in this sample because the lattice is truncated in
such a manner that only the two corner resonators are
“peeled off” from the red bonds [see Fig. 2(a)]. However,
it is also possible to truncate the lattice in other ways
that should generate topological surface states, according
to the analysis of quantized Wannier centers. Previously,
it has been predicted that such surface states should exist
on a (111) surface [37] (see Supplemental Material C [31]);
moreover, there should be no surface states along other sur-
faces where the lattice truncation occurs along blue bonds.
To test this prediction, we fabricated a tetrahedronlike

sample containing four different surfaces, oriented at (111),
(11̄ 1̄), (1̄11̄), and (1̄ 1̄ 1), as shown in Fig. 4(a). We excite
and measure the acoustic response at a surface resonator on
the (111) surface, indicated by the red star in Fig. 4(a), and
repeat the procedure for the other three surfaces. The
results, plotted in Fig. 4(b), agree well with the theoretical
predictions. Only along the (111) surface is there a sharp
response peak, at around 2910 Hz, corresponding to the
surface state. Along the other three surfaces, we observe
only the two peaks corresponding to the bulk states. By
performing the measurement in all the lattice resonators, we
derive the map shown in Figs. 4(c)–4(d): at 2900 Hz, the
response is much higher along the (111) surface than
elsewhere in the lattice.
In conclusion, we have implemented a third-order TI on

an acoustic anisotropic diamond lattice. Corner states and
surface states were observed in a rhombohedronlike sample
and a tetrahedronlike sample, respectively, in accordance
with a theoretical analysis based on quantized Wannier
centers. Unlike electronic systems, the absence of a Fermi
level in acoustic structures makes the entire spectrum easily

(a) (b)

(c) (d)

FIG. 3. Experimental observation of corner states in a rhombohedron-like acoustic structure. (a) Measured bulk trans-
mission spectrum. (b) Measured spectra at the two corner sites indicated in (c) and (d). (c),(d) Measured pressure maps at
2900 Hz, viewed from the front (c) and back (d). The illustration of the structure is simplified for clarity; for the real structure see
Figs. 2(d)–2(f). The balls correspond to the cylindrical resonators and the gray bonds indicate the couplings. The color of each ball
represents the measured acoustic pressure at that site, as measured at the top of the cylindrical resonator. The color map does not apply to
the bonds.
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accessible, allowing us to probe bulk, surface, and corner
states at different frequencies. The extension of topological
corner states from 2D to 3D may have potential use in
applications such as acoustic manipulation and sensing
[38]. We also envision that our study will inspire more
experimental studies into the implementation of higher-
order TIs and high-order topological semimetals [25,39,40]
in higher dimensions.
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