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We show that a non-Hermitian lattice with a disclination can host topological disclination states that are
induced by on-site gain and loss. The disclination states are inherently non-Hermitian as they do not exist in
the limit of zero gain or loss. They arise from charge fractionalization in the non-Hermitian lattice, which
we establish using non-Hermitian Wilson loops calculated with biorthogonal products. The model is
suitable for realization on established experimental platforms, such as arrays of photonic or polaritonic
resonators. The emergence of the topological disclination states can manifest as an abrupt shift in emission

intensity and frequency with varying gain or loss.
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Introduction—In discrete lattices, dislocations and dis-
clinations are elementary defects that cannot be removed by
local deformations due to their global topological structure
[1-6]. They play an important role in many condensed-
matter phenomena, such as the melting of two-dimensional
solids [6]. In topological materials [7], such defects have a
special significance: they obey “bulk-defect correspond-
ences” that generalize the bulk-boundary correspondences
that are the usual signatures for bulk band topology [8-24].
In certain higher-order topological insulators (HOTIs) [25—
35], bulk-defect correspondences may be used to probe
topological properties that are hard to access through
boundary measurements [15,16]. Aside from the appear-
ance of localized defect states, some bulk-defect corre-
spondences predict charge fractionalization, whereby a
fraction of a unit charge polarization is localized at the
defect. This phenomenon results from an incompatibility
between charge quantization and lattice symmetries (a fill-
ing anomaly), which underpins the topology of HOTIs [25—
27]. Recently, charge fractionalization and localized states
have been observed experimentally in 2D photonic lattices
with disclinations [15,16].

Theoretical analyses of topological materials, including
most earlier studies of bulk-defect correspondences, usually
take Hermiticity as a starting assumption. In recent years,
however, there has been increasing interest in non-Hermitian
(NH) [36-38] topological materials [39-48]. Not only do
such systems pose the theoretically interesting challenge of
formulating band topology without Hermiticity, but they are
also of practical interest: in the classical-wave metamaterials
commonly used to realize topological phases, loss and gain
are often non-negligible [49-55]. For example, topological
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lasers, which are promising technological applications of
topological states, are inherently NH [56—61]. Research into
NH band topology has uncovered numerous surprises, such
as NH topological phases distinct from any Hermitian
counterpart [39,40,48,62—-64]. Other recent studies have
shown that gain and loss can induce boundary states in 1D
lattices [65—-68] and corner states in 2D lattices [69,70]. To
our knowledge, however, topological bulk-defect corre-
spondences have not yet been studied in the NH regime.

In this Letter, we demonstrate that a NH lattice contain-
ing a disclination can host topological disclination states
associated with fractional (1/2) charge. Unlike the pre-
viously studied disclination states of Hermitian lattices [8—
12,14-24], these NH disclination states are induced solely
by on-site gain and loss, and are nonexistent in the
Hermitian limit. The model consists of a 2D graphenelike
honeycomb lattice with a disclination; the application of a
specific pattern of gain or loss (imaginary on-site mass
terms) generates a bulk gap in the real part of the energy
spectrum, in which the disclination states appear [71-74].
Previously, gain- or loss-induced topological states have
been found in NH models like the Takata-Notomi model, a
1D lattice hosting NH midgap boundary states [65], as well
as a NH 2D HOTI with gain- or loss-induced corner states
[69]. NH topological disclination states, however, have not
yet been identified. (There have been some studies of how
lattice defects affect the non-Hermitian skin effect, which is
a separate issue [75-78].) Our work also establishes NH
charge fractionalization at a lattice defect, a phenomenon
previously limited to Hermitian models [14-16]. The
charge fractionalization is established using Wilson loops
derived from biorthogonal products, and also using a NH
formulation of the density of states. We will also discuss an
alternative model featuring NH disclination states unac-
companied by fractional charge.

© 2024 American Physical Society
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FIG. 1.

(a) Schematic of a 2D NH lattice containing a disclination, with nearest-neighbor hopping J (black links) and on-site gain iy

(red circles) or loss —iy (gray circles). (b) Re(E) spectrum for a 630-site lattice based on (a). Marker colors indicate the degree of
localization to the bulk, edge, corners, and disclination (see Supplemental Material [79]). Horizontal dashes indicate the bulk gap
obtained from Fig. 2(a), in which lie the edge, corner, and disclination states. The energies labeled 1-5 correspond to disclination states.
(c) Plot of Re(E) versus y, with the same marker color scheme as in (b). The shaded green area corresponds to the bulk gap, and vertical
magenta dashes indicate the reference gain or loss level y = 1.3. The range y < 0 is omitted as it just gives the conjugate of the y > 0
spectrum. (d) Intensity (|, |2) distributions for the disclination states in (b). () Complex energy spectrum for the disclination-bearing

lattice of (b) and (d). In all subplots, the hopping is J = 1.

Finally, we study the prospects for realizing such a NH
lattice using pumped optical resonators. In this setting, the
gain- or loss-induced topological disclination mode has a
distinctive experimental signature in the form of an increase
in emission intensity and abrupt shift in peak frequency as
the gain or loss level is tuned. The unique properties of NH
topological disclination states, which are gain- or loss-
induced and yet possess a level of robustness due to their
topological origins, may eventually be useful for designing
novel lasers and related devices.

Model—We consider the 2D NH lattice shown in
Fig. 1(a). The lattice structure is generated by introducing
a disclination into a pristine honeycomb lattice, as
explained below, with each nearest-neighbor pair of sites
connected by a real hopping J. Each site contains gains (red
circles) or losses (gray circles), which are represented by
imaginary on-site mass terms +iy, where y > 0 is the gain
or loss level [36]. The Hamiltonian is

H = Ziyna:gan + J(Z% (az,an + H.c.), (1)

where 7, = +y, aj, and a,, are the creation and annihilation
operators on site n, and (nn’) denotes nearest neighbors.
For y = 0, this reduces to a Hermitian graphene-type lattice

with a disclination [10], which is known to have no bulk
gap and no edge, corner, or disclination states [79].

For nonzero y, Fig. 1(b) shows the real part of the
spectrum. The lattice is based on Fig. 1(a) but expanded to
630 sites, with y =13 and J = 1. There are several
eigenenergies near the center of the gap, marked in blue
and red, which are edge and corner states localized to the
outer boundary of the sample [79].

We also see five eigenenergies, two doublets and a
singlet, marked in yellow. These turn out to be gain- or loss-
induced disclination states. As shown in Fig. 1(c), they
emerge into the bulk gap at nonzero values of y. Their
intensity distributions (i.e., [y,|?, where ,, is an energy
eigenfunction on site n) are localized to the disclination
core, as shown in Fig. 1(d). Figure 1(e) shows where the
eigenenergies are located in the complex E plane.

To understand these results, consider the related discli-
nation-free NH honeycomb lattice shown in Fig. 2(a). It has
Cg rotational symmetry, with a unit cell (yellow hexagon)
of 18 sites. The lattice of Fig. 1(a) can be generated from
this through a Volterra (“‘cut-and-glue”) process, by remov-
ing a 7/3 sector (blue-shaded region) and reconnecting the
seams. With the chosen gain or loss distribution, there is no
seam or discontinuity after the Volterra process. Other gain
or loss distributions, despite being simpler, lack this crucial

property.
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FIG. 2. (a) Schematic of a 2D NH honeycomb lattice with an
18-site unit cell (yellow region). From this, Fig. 1(a) can be
generated by cutting out a /3 sector (blue region). (b) Real bulk
band diagram for y = 0 (gray dashes) and y = 1.3 (purple lines).
(c) Re(E) spectrum for a 762-site hexagonal sample with y = 1.3.
Marker colors indicate the degree of localization to the bulk,
edge, and corners [79]. In the bulk gap (horizontal dashes), there
are edge and corner states, with the latter pinned to Re(E) = 0.
Inset: intensity (Jy|?) distributions for representative corner and
edge states. (d) Wilson loops for the lowest nine bands at y = 1.3.
Upper inset: the unit cell for this calculation [79]. Lower inset:
layout of Brillouin zones and reciprocal lattice vectors by ,.
(e) Positions of Wannier centers (black and blue stars) near the
disclination. Those adjacent to the disclination core (blue stars)
yield a fractional charge of 1/2 (mod 1). In all subplots, J = 1.

Figure 2(b) shows the real part of the bulk band diagram
for the NH lattice of Fig. 2(a), with hopping J = 1. In the
Hermitian limit (i.e., y = 0), the eigenenergies are real and
gapless (gray dashes); this is simply the band diagram for
graphene, with the original K and K’ points folded onto I'.
For y # 0, a real line gap—i.e., a gap in the real part of the
energy, Re(E) [48]—opens up around Re(E) = 0 (purple

lines). In Fig. 2(c), we plot Re(E) for a finite hexagonal
sample with 762 sites. This spectrum exhibits the same real
line gap as the bulk system, but with additional edge and
corner states occupying the bulk gap. The intensity dis-
tributions for two exemplary states are plotted in the inset of
Fig. 2(c). (There are also trivial corner states lying outside
the gap [79].) Evidently, the lattice behaves much like a NH
version of a HOTI [25], with the nonzero gain and loss
generating a real line gap as well as in-gap boundary
states [69,79].

Topological characterization—In Hermitian HOTIs, the
topological states are tied to the deeper phenomenon of
robust charge fractionalization [14—16]. Here, we argue that
the disclination in the present NH model induces a frac-
tional charge of 1/2.

For the periodic lattice of Fig. 2(a), we numerically
calculate Wilson loops involving all nine bands situated
below the real line gap. We first adjust the shape of the unit
cell to avoid the ambiguity of certain sites falling on the
edges of the unit cell [Fig. 2(d), upper inset]. Next, the first
Brillouin zone is discretized along the reciprocal lattice
vectors b, and b, [Fig. 2(d), lower inset]. Starting from a
given k, the Wilson loop matrices are [69,70]

W, = F;(k+ NAK;) -+ F;(k + Ak)F;(k),  (2)

where N is the number of discretization points in the b;
direction, Ak; is the wave vector step, and F;(k)isa 9 x 9
matrix of biorthogonal products,

F (k) = (uy, (k + Ak;)[us (k). (3)

Here, m, n index bands below the line gap at Re(E) = 0,
and u"/R (k) denotes left and right eigenvectors of the Bloch
Hamiltonian, which satisfy the biorthogonality relation
(1 (k)1 (K)) = 8, [36].

From the eigenvalues 4; of W;, we retrieve the phases
v; = —iln(4;). Figure 2(d) plots Re(r,) as the initial k
point varies along the b; direction. Throughout this
trajectory, Im(v,) is close to zero. The plot for Re(v,),
as k varies along b,, behaves very similarly and is thus
omitted. The Wilson loop exhibits no overall winding, but
crosses £z an odd number of times. This is the same
behavior found in the Hermitian Wu-Hu model, using
standard inner products for the W; matrices [88-91]. That
Hermitian model is known to belong to the 2D Stiefel-
Whitney class and supports a HOTI phase with Wannier
centers at the 3¢ Wyckoff position [91-93].

Informed by these results, we take a close-up view of the
disclination-bearing lattice from Fig. 1(a). As shown in
Fig. 2(e), the Wannier centers (black and blue stars) lie at
the boundaries of the unit cells, contributing 1/2 (mod 1)
spectral charge to each adjacent cell [14,15]. Since the
boundary of the disclination core crosses an odd number of
Wannier centers (blue stars), the disclination carries a
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fractional charge of 1/2 (mod 1). In Hermitian lattices, a
similar argument for charge fractionalization at disclina-
tions [14] has been verified in experiments on microwave
metamaterials and photonic crystals [15,16].

Another way to identify disclination charge is to examine
the local density of states [15,16,27]. For each site j, we
define the expected density

(M) = (yma L, lyr3n). (4)

where IT; = |j) (/| is a local projection operator and s/ Ry
are the biorthogonal mth left and right eigenstates of the full
lattice. For our NH model, (IT;,) is complex-valued
[48,94,95]. We define the disclination charge as

Q4= Z|<Hjm>|<m0d 1), (5)

with j summed over sites near the disclination core [79],
and m summed over all states below the bulk gap—i.e.,
Re(E) below the bottom dashes in Fig. 1(b). For the lattice
of Fig. 2(e), we obtain O, = 0.53, close to the predicted
value of 0.5.

Alternative gain or loss pattern—Figures 3(a),(b) show a
lattice with an alternative gain or loss distribution. Like the
previous design, the periodic lattice has 18 sites per unit
cell, and the gain or loss pattern produces no seam under
the Volterra process. For y # 0, this lattice exhibits a real

(@)

© m

FIG. 3. (a),(b) An alternative NH lattice, similar to Figs. 1(a)
and 2(a), but with a different gain or loss pattern. (c) Wilson loop
for the lowest nine bands, with J = 1 and y = 0.75. (d) Close-up
view of the disclination-bearing lattice, with the Wannier centers
marked by black stars.

line gap, but no corner or disclination states (for details, see
the Supplemental Material [79]). We thus interpret this as a
NH analog of a HOTI in the trivial phase. Moreover, if we
apply a disclination with a Frank angle of 27z/3, the
resulting C,-symmetric lattice does host a midgap discli-
nation state [79], consistent with Deng et al.’s finding that a
Wu-Hu lattice in its trivial phase hosts a disclination state
for a 2z/3 disclination but not a z/3 disclination [21].

Repeating the Wilson loop calculation for this case, we
obtain the results shown in Fig. 3(c), consisting of trivial
windings reminiscent of the trivial phase of the Hermitian
Wu-Hu model with Wannier centers at the 1a Wyckoff
position [92,93]. Figure 3(d) shows the positions of the
Wannier centers (black stars), which lie at the centers of the
unit cells and thus do not contribute fractional charge to the
disclination core. This is consistent with the lattice’s
aforementioned lack of gain- or loss-induced disclina-
tion-bound states, and further supported by the charge
calculation yielding Q,; = —0.08.

Experimental signatures—The present model should be
realizable using established experimental platforms, such
as photonic lattices [66,67,70,96-98]. The model’s intersite
hoppings are reciprocal, positive, and nearest-neighbor,
with the non-Hermiticity entering only in the form of on-
site gain and loss. A likely complication in real lattices is
that the intersite hoppings may be spatially inhomogeneous
due to varying distances between resonators, but our
numerical studies indicate that this does not substantially
alter the disclination states [79].

As an example of how the NH disclination states could
be identified in an experiment, we insert the lattice of
Fig. 1(a) into a driven Schrodinger equation,

iaa—yt/ = Hy — iyy + Fe™ '@, (6)
where y is the state vector, H is the NH lattice Hamiltonian,
and an additional loss y is applied to all sites. This can
describe a setup where individual sites have fixed loss and
tunable gain, such that one sublattice has zero net gain and
loss and the other has loss 2y. We also include an excitation
of frequency @, and spatially dependent amplitude F.
Exploiting the phase profiles of the disclination states [79],
we concentrate F on three disclination core sites, indicated
in the inset of Fig. 4(a), to create a strong overlap with a
specific disclination state. Figure 4(a) shows the resulting
intensity spectrum on the five disclination core sites. With
increasing y, the intensity peak shifts closer to midgap and
grows greatly in magnitude. As shown in Fig. 4(b), the peak
frequency jumps abruptly, coinciding with the emergence
of the disclination state into the gain- or loss-induced bulk
gap. The steady-state intensity profiles, plotted in Fig. 4(c),
show strong localization in the large-y regime. Note that
Eq. (6) is also very close to the model equations for a
polaritonic lattice [56,60,68,80-84,99-101], except for the
omission of nonlinearities [85]. In the Supplemental
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FIG. 4. (a) Time domain simulation results for a disclination-
bearing lattice [Fig. 1(a)] driven by a monochromatic excitation
on three sites at the disclination core (green stars, inset), with
F = 0 on all other sites. The intensity on the core sites (>_, |y,|*,
summing over on the five starred sites in the inset) is plotted
against the excitation frequency w, for different y, with J = 1.
(b) Plot of peak frequency versus y. The shaded green area
indicates the bulk gap of the undriven lattice. (c) Steady-state
intensity profile for two values of y. For large y, the intensity is
strongly localized to the disclination core.

Material, we investigate the role of such nonlinearities and
find that they can cause the disinclination states to exhibit
bistability [79].

Conclusion—We have shown that disclinations in 2D
lattices can host non-Hermitian disclination states, which
emerge when a bulk gap is created by a specific pattern of
gain or loss on the lattice sites. The disclinations carry
fractional charge 1/2, thereby extending recent results on
Hermitian topological disclination states into the non-
Hermitian case. Because these topological disclination
states are induced by gain or loss tuning, they might be
used as the basis for novel lasers whose modes can be
manipulated via selective pumping.
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