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ABSTRACT: We consider a photonic lattice of nonlinear lossy
resonators subjected to a coherent drive, where the system
remembers its topological phase. Initially, the system is
topologically trivial. After the application of an additional coherent
pulse, the intensity is increased, which modifies the couplings in
the system and then induces a topological phase transition.
However, when the effect of the pulse dies out, the system does not
go back to the trivial phase. Instead, it remembers the topological
phase and maintains its topology acquired during the pulse
application. The pulse can be used as a switch to trigger amplification of the topological modes. We further show that the
amplification takes place at a different frequency as well as at a different position from those of the pulse, indicating frequency
conversion and intensity transfer. Our work can be useful in triggering the different functionalities of active topological photonic
devices.
KEYWORDS: nonlinear topology, topological corner modes, bistability, optical memory, topological laser

■ INTRODUCTION
The intriguing properties of topological photonics have
enabled widespread applications in modern optical devices,
such as robust signal transport,1−5 optical delay line,6 quantum
interface,7 quantum light source,8 robust splitters,9 and
topological lasers.10−14 Topological photonics is also promis-
ing for optical information processing technologies. For
example, valley photonic crystals are identified as an excellent
candidate for robust information transfer in next-generation
devices.3−5 Similar to transferring the information, the ability
to store it in memory is an equally important task in
information processing. However, optical memories along
with topological protection have not been explored until now.
Nonlinearity is at the core of memory devices. The interplay

between the nonlinearity and the topology has made way for
many novel effects such as topological solitons,15−19 high
harmonic generation,20,21 topological phase transitions,22−27

and others28−33 (see ref 34 for a comprehensive review).
However, none of the previous works can show the memory
feature: once the key ingredient, which induces the
functionalities, is removed from the scheme, the systems can
no longer continue to exhibit such effects.
In this work, we introduce for the first time a topological

phase with memory in a lattice of lossy resonators having local
onsite Kerr nonlinearity, where the system remembers its
topological phase. The lossy nature of the system leads to a
steady state in the presence of a coherent drive F. However,
due to the nonlinearity, our system subjected to a properly
designed F shows not only one but two steady states: low- and

high-intensity states. Our system is topologically trivial, and
after F is introduced, it attains the low-intensity steady state.
The introduction of an additional coherent pulse increases the
intensity of the system. At higher intensities, the nonlinear
interaction modifies the couplings, and the otherwise-trivial
system becomes topological. However, at longer times when
the effect of the pulse dies, the system does not go back to its
previous trivial phase. Instead, it remembers the topological
phase and maintains its topology acquired during the pulse
application. As an application of this effect, we show a unique
amplification phenomenon, where the amplification is
triggered by a pulse.
We start by considering a nonlinear optical resonator

subjected to a coherent drive F (see Figure 1a), which is
represented by the following nonlinear Schrödinger equation
(NLSE):

= + | | +i
t

i F i t( ) exp( )p0
2

(1)

Here ω0 is the onsite potential, and Γ is the linear decay. The
next term represents the defocusing Kerr nonlinearity, where
the nonlinear coefficient is set to 1. F is a coherent drive having
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frequency ωp. For the steady-state ψs, where ∂ψs/∂t = 0, one
can obtain

| | = [ + | | + ]| |F ( )s s
2 2 2 2 2

(2)

where Δ = (ω0 − ωp). From eq 2, it is easy to find that within
the gray region for each |F|2 three possible |ψs|2 exist (see
Figure 1b). However, in practice, the middle branch is not
stable. This can be confirmed by numerically solving eq 1, but
letting F vary very slowly in time such that at each time step
steady state can be reached (more details on the numerical
calculation of bistability can be found in the Supporting
Information). The red dashed curve obtained numerically
follows the analytical green curve; however, the middle branch
does not appear. Consequently, the system shows bistability by
allowing both the low- and high-intensity stable states for a
fixed value of F within the gray region. The absence of the
middle branch of the bistability curve can be explained using
the stability analysis based on the first Lyapunov criterion35

(see the Supporting Information).
An important characteristic of bistability is their ability to

mimic the memory: the state of the system is determined not
only by the current parameters (such as F) but also by its
previous state. For example, let us consider a system that is
initially in the low-intensity state “A” as shown in Figure 1b. An
additional coherent drive ΔF is added such that the system
moves to a high-intensity state “B”. Now if ΔF is removed, the
system does not return back to its original state “A”; instead, it
chooses the high-intensity state “C”. While determining the
final state, the system memorizes the information (high-
intensity) about the intermediate state “B”, and in the case
where “B” is a low-intensity state, the system would return to
the original state “A” upon removing ΔF.

■ MODEL
We arrange the nonlinear resonators in a 2D lattice. In order to
be close with experiments, we model the dynamics of the
system using the NLSE in the continuum limit (where the
space is taken as continuous). Without the loss of generality,
we work with the dimensionless NLSE, which is expressed as
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Here ∇2 ≡ (∂2/∂x2 + ∂2/∂y2) is the transverse Laplacian
operator, V is the external potential profile corresponding to

the resonators, Γ is the linear decay, F is a position-dependent
coherent pump having frequency ωp, and Fp is a coherent pulse
having duration τ centered at time t0. Next, we consider
circular resonators having diameter dm, which we call main
resonators. Two main resonators separated by L are coupled
via an auxiliary larger resonator having diameter da, where da >
dm (see Figure 2a). The potential is taken as V = 0 inside and V
= V0 > 0 outside the resonators.

To capture the role of nonlinearity, we first consider two
main resonators connected by an auxiliary resonator as shown
in Figure 2a. The ground-state wave function ψ0 is mainly
localized at the auxiliary resonator (see Figure 2b), whereas
the first (ψ1) and second (ψ2) excited states are localized at the
main resonators (see Figure 2c,d). The coupling strength J
between the main resonators can be estimated from the
difference in the eigenvalues of the symmetric (E2) and
asymmetric (E1) eigenstates, where J = (E2 − E1)/2. The
important feature that plays a key role and signifies the
nonlinear effect in this work is the ability to control the
coupling between the main resonators by changing the
intensity of the auxiliary resonator. This is captured by
choosing an effective potential Veff = V + g|ψ0|2, where g
corresponds to the peak value of the ground-state intensity,
and obtaining the coupling in the nonlinear regime JNL in a
self-consistent way. Figure 2e shows the enhancement of JNL
compared to J as a function of g. However, such an
enhancement of JNL is limited. Once g becomes larger than
the difference between the fundamental frequencies of the
main and the auxiliary resonators, JNL would start to decrease
and for g → ∞, JNL → 0.

■ TOPOLOGICAL MEMORY
Now that we have all the ingredients, we proceed to study the
topological phase in a 2D square lattice formed by the above-
mentioned resonators, where between any two main resonators
there is an auxiliary resonator. Recalling that the intensity of
the auxiliary resonators enhances the coupling between the
main resonators, we choose the coherent pump profile in such
a way that the intercells are coupled strongly similar to the 2D
Su−Schrieffer−Heeger (SSH) model.36 The spatial profile of
the coherent pump is expressed as
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Figure 1. (a) Schematic of a coherently driven nonlinear resonator.
(b) Analytically and numerically calculated bistable curves in green
and red, respectively. Parameters: Δ = −3, Γ = 1.

Figure 2. (a) Schematic of two main resonators connected by an
auxiliary resonator. (b, c, d) The lowest three modes of the system
shown in (a). (e) The ratio of the coupling in the nonlinear regime
JNL to the linear coupling J between two main resonators as a function
of the intensity of the auxiliary resonator. Parameters: V0 = 236, L =
2.13, dm = 1, da = 1.13.
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where P0 is the strength of the pump and {Xn, Yn} are the
coordinates of the center of the pumped auxiliary resonators as
shown in Figure 3a. Such pump profiles are readily achieved in

practice using the spatial light modulators.37,38 We choose the
value of P0 such that the auxiliary resonators subjected to the
pump are bistable. To show the bistable behavior of the whole
system, we solve eq 3 without the pulse (Fp = 0) and take zeros
as the initial condition. While plotting the spatial profiles, we
keep the background potential to distinguish the intensities
between the main and auxiliary resonators. Figure 3b shows
the steady state of the system before the application of the
pulse, where intensity is mainly localized at the pumped
auxiliary resonators. The coupling between the resonators
results in slightly nonidentical bistability curves of the
resonators placed at different positions (see Supporting
Information). Due to this, the intensity among the pumped
resonators varies a little, but they remain in the low-intensity
state, where |ψ|2 is negligible.
Next, we apply a Gaussian-shaped coherent pulse Fp

centered at the bulk as shown by the green circle in Figure
3b. The addition and removal of the additional pump ΔF in
Figure 1b is performed by the pulse Fp here. In Figure 3c the
steady state of the system after the application of the pulse is
shown. The system indeed remembers the high intensity
created by the pulse, and once the effect of the pulse dies out,
the system chooses to stay at the high-intensity state.
Compared to the low-intensity state in Figure 3b, a much
larger intensity outside the pumped auxiliary resonators exists,
which signifies the enhancement of the coupling due to
significant |ψ|2. In Figure 3d the total intensity of the system,
I(t) = ∫ ψ(x, y, t) dx dy, where the integration is over the
whole system, is shown as a function of time, which shows the
bistable behavior of the system. The full dynamics of the
system is shown in Movie 1.

We have performed all the calculations corresponding to the
2D lattice on a 29 × 29 grid. The Laplacian is taken into
account through the FFT (fast Fourier transform) spectral
method. It should be noted that the finite difference (FD)
method can also be implemented to express the Laplacian.
However, FD requires larger computational memory and is
more time-consuming compared to the FFT method. The time
dynamics is performed using Matlab’s ODE solvers, which
relies on well-established numerical techniques, such as the
explicit Runge−Kutta (4,5) formula, the Dormand−Prince
pair.39

Having established the memory effect in the 2D lattice, here
we show the topology associated with it. In Figure 4a the

eigenfrequencies of the linear system are shown, which can be
found by putting the nonlinear and pumping terms to zero in
eq 3 and diagonalizing its corresponding Hamiltonian. The
lower band (shown in gray) has the main contributions from
to the auxiliary resonators, whereas the upper band has the
main contributions from the main resonators. For the rest of
the work, we shall focus on the main resonator band, which is
topologically trivial and gapless in the linear regime. To include
the nonlinear effect, we study the Bogoliubov fluctuations on
top of the steady state:40

= + + * *x y x y u x y v x y e( , ) ( , ) ( , )e ( , )s n
i t

n
i tn n (5)

Here ψs represent the low- and high-intensity steady states
shown in Figure 3b,c, respectively. un and vn represent the
fluctuations having frequency ωn. Substituting eq 5 into eq 3
and by ignoring the higher-order terms in un and vn, we obtain
the following eigenvalue equation:
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Figure 3. (a) Spatial profile of the coherent pump. (b, c) Steady states
of the system before and after the coherent pulse Fp, respectively. The
green circle in (b) represents the width of Fp. (d) The total intensity
of the system as a function of time showing the bistable behavior. The
two arrows indicate the times at which the states in (b, c) are plotted.
Parameters: Γ = 0.13, P0 = √0.5, ωp = 14.74, σ = 0.3, τ = 23.9, t0 =
77. Fp is a Gaussian pulse having strength 20P0 and width 7.5σ. All
other parameters are kept the same as those in Figure 2.

Figure 4. (a, b, c) Real eigenfrequencies for different cases. In (a) the
auxiliary resonator band is shown in gray and the main resonator band
is shown in black. Red and green dots in (c) correspond to the corner
and edge modes, respectively. The blue line in (a) represents ωp, with
respect to which (b, c) are rescaled. (d, e) Spatial profiles of an edge
and a corner mode, respectively. All the parameters are kept the same
as those in Figure 3.
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where H0 = [−∇2 + V(x, y) − iΓ − ωp], which is rescaled with
respect to the pump frequency ωp.
The fluctuation Hamiltonian has particle-hole symmetry,

which makes the eigenfrequencies appear in pairs (ωn, −ωn*).
The Hilbert space of the fluctuation Hamiltonian is double in
size compared to the linear one. Consequently, for better
visualization we show the eigenfrequencies near the main
resonator band and for Re ωn > 0. Figure 4b shows the
eigenfrequencies of the fluctuations before the pulse is applied.
Similar to the linear case, the band is gapless. This is
understandable, as for the low-intensity state, |ψ|2 is not
significant enough to induce the topological transition. After
the application of the pulse positioned at the bulk, the system
switches to the high-intensity state. In this case, the nonlinear
effect becomes significant and the coupling between the main
resonators connected by a pumped auxiliary resonator
increases. The system goes through a topological phase
transition from trivial to second-order topological phase,
where a bulk band gap opens and four topological corner
modes appear. An effective tight-binding model based on the
strong coupling induced by the pump can reproduce the
topological corner modes (see the Supporting Information).
In Figure 4c the eigenfrequencies of the fluctuation after the

application of the pulse are shown, where the topological
corner modes are marked in red and the edge modes are
shown in green. Figure 4d,e show the spatial profiles of one of
the topological edge modes (n = 146) and topological corner
modes (n = 142), respectively. In experiment, the topological
modes will be hidden in the high-intensity steady state.
However, they can be probed using a weak additional coherent
pump followed by the frequency filtration to subtract the
steady state.
Higher-order topological phases have been an intense area of

research.36,41,42 We note that the effect of the on-site Kerr
nonlinearity on these system has been studied re-
cently.30,32,33,43 However, the previous works consider the
effect of nonlinearity on the already existing linear topological
band structure. The presented result is the first example where
on-site Kerr nonlinearity alone induces higher-order topo-
logical phase transition. Although here we have focused on the
topological corner modes, it would be interesting to investigate
further whether different truncations can lead to different types
of edge states, such as the ones shown in ref 44.

■ CALCULATION OF THE TOPOLOGICAL
INVARIANT

Here we calculate the bulk polarization, which characterizes
the topological corner modes,45 using a biorthogonal Wilson
loop.46 We define a Wilson line along the y-direction as

= |

=

+

+
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x y x y x y
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where Ψk dx, k dy

n represents the Bloch eigenvectors of the
fluctuations (see Supporting Information for details on the
Bloch eigenvector calculation), and L and R correspond to the
left and right Bloch eigenstates, respectively. Δy = 2π/Ny,
where Ny is the total number of points used along the y-
direction of the Brillouin zone for calculation. Taking the
periodicity as one, the Wilson loop along the y-direction is
defined as

= + +

× +

W k k k k k k

k k k k

( , ) ( , 2 )... ( , 2 )

( , ) ( , )

y
x y y

m n
x y y

m n
x y y

y
m n

x y y y
m n

x y

, ,

, ,
(8)

The Wannier Hamiltonian is given by

= [ ]H k k
i

W k k( , )
2

log ( , )W
y

x y
y

x y (9)

The eigenvalues of HW
y form the Wannier bands, which are

shown in Figure 5. The bulk polarization P = (Px, Py) is the

same as the Wannier center. For a topologically trivial system P
= (0, 0). The x component of the bulk polarization Px is given
by summing all the eigenvalues νy corresponding to all the
momenta kx.

45 It can be seen from Figure 5 that Px ≈ 0.5. Since
the system has C4 rotational symmetry, one can obtain a
similar result by choosing the Wilson loop along the x-
direction, such that the y component of the bulk polarization
Py ≈ 0.5 and the total polarization becomes P ≈ (0.5, 0.5),
making the system topologically nontrivial.

■ AMPLIFICATION OF THE CORNER MODES
As an application, we use our proposed scheme to control the
functionality of an active topological photonic device. We
introduce gain at the main four corner resonators of the 2D
lattice. The gain is modeled by adding a term +iG(x, y)ψ(x, y)
at the right-hand side of eq 3, where G(x, y) is composed of
four Gaussians centered at the four corners having width σ and
peak value G0. In this case, H0 in eq 6 is updated to H0 → H0 +
iG(x, y). To signify the role of nonlinearity, it is important that
the gain alone cannot induce lasing in the linear regime.
Consequently, we obtain the complex eigenfrequencies for the
linear system. The system stays below the lasing threshold Im
ωn < 0 (see Figure 6a). Next, we take the steady states
corresponding to Figure 3b,c and obtain the same plot for the
fluctuations before and after the pulse is applied. Similar to the
linear case, the modes have Im ωn < 0 before the application of
the pulse (see Figure 6b). However, after the pulse is applied
topological corner modes appear, and due to the significant
overlap with the gain, only they have Im ωn > 0, while all other
modes remain at Im ωn < 0 (see Figure 6c). This has a
significant effect on the steady states. As predicted from the
complex eigenfrequencies, the gain at the four corners does not
alter the steady state before the pulse, which is the same as the
one obtained without the gain in Figure 3b. However, after the
pulse is applied, a large intensity at the corners is observed
along with the high-intensity steady state at the bulk (see
Movie 2).
To confirm that the intensity at the corners corresponds to

the topological corner modes, we further obtain their spatial
profile from the time dynamics, which does not rely on the
linear Bogoliubov theory (which does not include the higher-

Figure 5. Plot of the Wannier bands obtained by diagonalizing eq 9.

ACS Photonics pubs.acs.org/journal/apchd5 Article

https://doi.org/10.1021/acsphotonics.2c01367
ACS Photonics 2023, 10, 147−154

150

https://pubs.acs.org/doi/suppl/10.1021/acsphotonics.2c01367/suppl_file/ph2c01367_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsphotonics.2c01367/suppl_file/ph2c01367_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsphotonics.2c01367/suppl_file/ph2c01367_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.2c01367?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.2c01367?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.2c01367?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.2c01367?fig=fig5&ref=pdf
pubs.acs.org/journal/apchd5?ref=pdf
https://doi.org/10.1021/acsphotonics.2c01367?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


order terms in u and v). We store the solutions at the
intermediate time steps corresponding to the steady states in
Figure 6d,e and then Fourier transform them along the time
axis to move to the frequency dimension. At this stage, we can
plot the intensity as a function of frequency. In order to obtain
the spatial profile corresponding to a particular frequency, we
first multiply with a Gaussian to filter the desired frequency
and plot the intensity. In Figure 7a, the above-mentioned steps
are given. In Figure 7b,c,d,e the frequency-dependent
intensities are shown for different cases. Without the gain,
we obtain a peak at the pumped frequency ωp for both before
and after the application of the pulse. It is important to note

that no other peak is observed. Now we move on to the case
where we introduce gain at the four corners. In this case also,
before the application of the pulse a single peak at ωp is
obtained. However, after the pulse is applied a new peak along
with the pumped peak is obtained (see Figure 7e). It proves
that the amplification at a different frequency has taken place
after the application of the pulse. To prove that the amplified
modes are the corner modes, we plot the spatial profile of the
wave function around the amplified frequency by filtering out
the desired frequency using the recipe mentioned in Figure 7a.
From the spatial profile shown in Figure 7f, it is clear that the
amplified modes are indeed the corner modes. Due to the
presence of the |ψ|2 term, the corner modes are shifted in
frequency from their linear Bogoliubov spectrum, which does
not include the higher-order terms in u and v.
There are a few unique features associated with the

amplification process presented above. First, the pulse is
positioned away from the corners at the bulk. However, the
amplification takes place at the corners of the system, which do
not overlap with the pulse. This can be interpreted as the
intensity transfer from the bulk to the corner. However, we
stress that such a process is completely different from the
signal transfer typically associated with the 1D edge modes of
first-order topological insulators. Second, the amplified corner
states have frequency different from that of the coherent drive,
which makes this system suitable for frequency conversion.
This is similar to the recent works on the high harmonic
generation using topological systems,20,21,47,48 although here
our underlying linear system is topologically trivial. Lastly, the
amplification, which is triggered by a pulse, is different from all
the previous cases. For example, in lasers if the pumping term
(or any other ingredient) that induces amplification (lasing) is
removed, understandably the amplification would stop. Due to
the memory effect, the functionality in our scheme remains,
although the pulse disappears.
We note that a different type of topological memory is

proposed recently in dynamic PT-symmetric optical resonators
having saturable nonlinearity.49,50 Unlike the present case, a

Figure 6. (a, b, c) Complex eigenfrequencies for different cases.
Steady states from Figure 3b,c are used for obtaining (b, c). (d, e)
Steady states of the system with gain at the corners before and after
the pulse is applied, respectively. The green circle in (d) shows the
position and width of the pulse. Parameters: Peak value of the gain G0
= 3Γ. All other parameters are kept the same as those in Figure 3.

Figure 7. (a) Steps to obtain spatial profiles of ψ at a particular frequency by solving the NLSE. (b, c, d, e) Frequency-dependent intensity. The
second peak in (e) corresponds to the amplification. (f) The spatial profile corresponds to the amplification peak in (e), which has the profile of
corner modes. In each case we normalize the intensity with respect to the intensity at ωp.
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lattice is not involved there. Instead, the system consists of a
single diatomic or triatomic resonator. The topology
introduced in those works is different from the topology
associated with band structures in usual topological lattices.
There, oscillating quenching states are protected against the
defects of the parameter space that preserve dynamical state
trajectories.

■ PROPOSAL FOR EXPERIMENTAL REALIZATION
The NLSE in eq 3 is generally used to describe the topological
physics in photonic waveguide arrays.17,18 Bistability is realized
experimentally in waveguide arrays,51 whereas the Bogoliubov
fluctuations in eq 6 can be arranged using the parametric
down-conversion.52−56 Alternatively, the system of exciton−
polaritons, where cavity photons exhibit Kerr nonlinearity by
coupling strongly with the quantum well excitons, is also a
promising platform for realizing our scheme. They are well
known for studying topological photonics.57−64 Bistability is
well established for exciton−polaritons.65−67 Bogoliubov
fluctuations naturally arise in polariton systems.19,68 By
choosing the proper physical units, our present parameters
can be related to the exciton−polariton lattices.
Here we provide the physical parameters based on the

exciton−polariton system. Typically, the system of exciton−
polaritons is expressed using the NLSE (also known as the
nonlinear Gross−Pitaevskii equation):69
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We restrict ourselves to the bottom of the lower polariton
dispersion, where the dispersion can be approximated to be a
parabola having effective mass m. Ve is the external potential for
the polaritons, which consists of microcavity pillars.59,70,71 λ is
the effective lifetime of the polaritons, which can be controlled
by adjusting the quality factor of the cavity. α > 0 is the
effective polariton−polariton interaction coefficient, which is
typically repulsive in nature. f is the coherent drive. Next, we
perform the following transformation in order to transform to
eq 3:

X xa Y ya V V T tt t

t f F

, , , , / ,

2 / , , and

e u u p p u

u
u u

3/2

(11)

where x, y, V, Γ, ψ, and F are the dimensionless quantities used
in eq 3. Here a is the length unit, εu = ℏ2/2ma2 is the energy
unit, tu = 2ma2/ℏ is the time unit, /u is the wave function
unit, and εu

3/2/√α is the pump unit. After the above
transformation in eq 11, eq 10 can be matched exactly with
eq 3.
We set a = 3 μm, which makes the diameter of the main

pillars 3 μm and that for the auxiliary pillars 3.4 μm. The
spacing between the main pillars becomes 6.4 μm. Such a
system of micropillars is readily achieved in experiments.59,70,71

By choosing m = 5 × 10−5me, where me is the free electron
mass, the energy unit becomes εu ≈ 0.085 meV. Fixing the

energy unit also fixes all the energy scales. The topological
band gap becomes around 0.12 meV, the effective potential
depth for the polaritons becomes 20 meV, and the lifetime
becomes 30 ps. The energy scale can be increased by choosing
smaller sized micropillars and reducing a, which increases εu.
Alternatively, by adjusting the detuning between the exciton
and photon branches, the effective mass of the polaritons can
be reduced, thereby increasing εu.
Another important parameter is the nonlinear interaction

constant α. The value of α can be controlled by adjusting the
exciton fraction of the polaritons. However, measuring α
exactly in experiments is difficult and still an ongoing research.
The measurable quantity in experiments is the blueshift α|ϕ|2.
For the above-mentioned parameters the blueshift for the low-
intensity state is around 0.03 meV and that for the high-
intensity state is around 0.35 meV. Such values of blueshift are
routine observations in experiments.72,73

For the introduction of the gain at the four corners, an
optical pump positioned at the corner having much higher
energy from the polariton resonance can be used. The pump
creates free electron−hole pairs, which relax down and form
the excitonic reservoir. The density of the excitons in the
excitonic reservoir acts as gain to the polaritons.69 Alter-
natively, it is also possible to arrange gain using electrical
pumping.74−76

■ CONCLUSION
To conclude, we have presented a new concept, where the
topological phase can be induced as a memory. In particular,
we show that a nonlinear system of photonic lossy resonators
goes through a topological phase transition under the
application of a coherent pulse. The system continues to
maintain its topology, although the effect of the pulse
disappears. The topological modes can show fair robustness
against realistic disorder (see Supporting Information). This
scheme is independent of the dimension, and similar effects
can be found in 1D lattices (see Supporting Information). Our
scheme is the first example where on-site Kerr nonlinearity
induces higher-order topology and can be useful in triggering
different functionalities of active topological photonic devices.
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