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Abstract: Filamentation, as a universal femtosecond phenomenon that could occur in various
nonlinear systems, has aroused extensive interest, owing to its underlying physics, complexity
and applicability. It is always anticipated to realize the controllable and designable filamentation.
For this aim, the crucial problem is how to actively break the symmetry of light-matter nonlinear
interaction. A kind of extensively used approaches is based on the controllable spatial structure
of optical fields involving phase, amplitude and polarization. Here we present an idea to control
the optical field collapse by introducing optical anisotropy of matter as an additional degree of
freedom, associated with polarization structure. Our theoretical prediction and experimental
results reveal that the synergy of optical anisotropy and polarization structure is indeed a very
effective means for controlling the optical field collapse, which has the robust feature against
random noise.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

A femtosecond (fs) optical field may undergo the collapse in a transparent Kerr medium [1–6]. As
the collapse exacerbates, the higher-order nonlinearity will take over, which will collaborate with
the intrinsic diffraction of optical field to counterbalance the self-focusing, resulting ultimately
in filamentation [1–17]. In general, the field collapse and subsequent filaments originate from
the Kerr-induced modulational instability [1–6]. And the filamentation patterns are initiated by
random noise of the optical field itself, which is difficult for us to precisely control and predict
them [7–9]. However, it is always anticipated for the realization of controllable field collapse and
subsequent filamentation, due to its practical implication [18–24]. For this aim, a great challenge
is how to actively control the symmetry breaking of light-matter nonlinear interaction and further
to suppress the inherent randomicity of the optical field itself. So far, the widely used methods
are to manipulate the spatial structure of scalar optical fields in phase and amplitude [10–15].

Polarization, as intrinsic vectorial nature of light, plays an indispensable role in the light-matter
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interaction. However, the spatial diversity of polarization has not yet been adequately utilized
in the optical field collapse and subsequent filamentation, only a few of works were related to
the control of polarization [16, 17, 25]. We successfully realized the controllable and robust
optical field collapse and filamentation via the hybrid polarization structure in an isotropic Kerr
medium [16,17], in which the symmetry of light-matter nonlinear interaction is actively broken
by the designable hybrid polarization structure of vector optical fields (VOFs) [26–28] because
the induced refractive index change depends on the polarization states. Clearly, polarization, as a
manipulable degree of freedom in spatial domain, indeed provides an opportunity and feasibility
for controlling the optical field collapse and subsequent filamentation.
To the best of our knowledge, the controllable field collapse and subsequent filamentation

mentioned above focus almost on the isotropic nonlinear media. An interesting question is what
happens when the polarization-structured VOF meets an optically anisotropic medium. This is
just our motivation in this paper, we present an idea for controlling the optical field collapse and
subsequent filamentation, based on the synergy of optical anisotropy and spatial polarization
structure. We demonstrate the feasibility of our idea by azimuthally-variant linearly-polarized
VOFs (AV-LP-VOFs) in optically anisotropic media. Our idea has the robust feature against
random noise and opens up a new avenues for controlling the optical field collapse with the aid
of optical anisotropy.

2. General principle

For the field collapse, the symmetry breaking of light-matter nonlinear interaction requires
the existence of self-focusing nucleation(s), where the induced refractive index change ∆n
must be local maximum that requires: (i) ∂∆n/∂p = ∂∆n/∂q = 0 and (ii)

{
∂2∆n/∂p2 < 0

}
∩{

∂2∆n/∂q2 < 0
}
(where p and q indicate two orthogonal coordinates in the cross-section of

optical field). As is well known, the induced refractive index change ∆n is directly proportional to
the local light intensity I and nonlinear index intensity coefficient nI (which is proportional to the
nonlinear index coefficient n2 or the third-order susceptibility of the nonlinear medium), hence the
above conditions become into (i) ∂I/∂p = ∂I/∂q = 0 and (ii)

{
∂2I/∂p2 < 0

}
∩

{
∂2I/∂q2 < 0

}
when the third-order susceptibility is space-invariant.

To produce the field collapse and even subsequent filamentation, the optical field should be
confined in two transverse dimensions simultaneously. For a cylindrical optical field with a phase
or polarization singularity, the focal field has been confined in the radial dimension (ρ) due to its
donut-shaped focal profile (i.e. ∂I/∂ρ|ρ=ρ0 = 0 and ∂2I/∂ρ2 |ρ=ρ0 < 0, where ρ0 is the radius of
the strongest ring of the donut-shaped focal field). Thus, whether such a focal field can produce the
field collapse and subsequent filamentation, depends only on the induced refractive index change
in the azimuthal dimension (φ). In an isotropic medium, we have ∂I/∂φ ≡ 0 and ∂2I/∂φ ≡ 0 at
any azimuthal location for the ideal radially-polarized VOF (RP-VOF), azimuthally-polarized
VOF (AP-VOF), and optical vortex field, i.e. they can never collapse and then to produce the
filamentation. The field collapsing patterns and subsequent filamentation are unpredictable and
uncertain for the practical RP-VOF and AP-VOF [29] and the practical vortex fields [30] in an
isotropic medium, because the initial self-focusing nucleations are dominated by random noise.
In contrast, for the azimuthally-variant hybridly-polarized VOFs (AV-HP-VOFs) in an isotropic
Kerr medium, we have confirmed ∂∆n/∂φ = 0 and ∂2∆n/∂φ < 0 at some special azimuthal
locations whose polarizations are local linearly polarized [with the maximum nI ], this is the
reason why AV-HP-VOFs can converge to the deterministic filaments [16, 17].
We anticipate our idea to be able to realize the control on the field collapse and subsequent

filamentation, by introducing the optical anisotropy. As is well known, only two orthogonally
linearly polarized eigenmodes with different refractive indices are permitted to propagate in
an anisotropic medium [31]. In a uniaxial crystal, the two eigenmodes are classified into an
ordinary-polarized (o-polarized) light with an ordinary refractive index independent of the
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propagation direction and an extraordinary-polarized (e-polarized) light with an extraordinary
refractive index depending on the propagation direction. The anisotropy of a uniaxial crystal can
be characterized by two principal refractive indices: an ordinary index (no) and an extraordinary
index (ne). One should be pointed out that the optical anisotropy can be just embodied only by
the light-matter interaction.

3. Simulations

Here we select a MgO-doped LiNbO3 (MgO:LiNbO3) crystal as an anisotropic medium, which
is a negative uniaxial crystal (no > ne) belonging to a trigonal (3m) crystal system. The use of
MgO:LiNbO3 is to eliminate the refractive index change caused by the photorefractive effect. For
any uniaxial crystal, the x and y axes are optically equivalent, while a unique distinguishable
direction is the z axis called the optic axis. As is well known, when an optical field propagates
along the z axis, both x- and y-polarized components are the ordinary light with the same
refractive index of no, similar to the propagation of light in an isotropic medium [31]. That is
to say, in this case the anisotropy cannot be reflected, of course, the anisotropy cannot also be
utilized. As the best choice, therefore, the optical field should enter into the MgO:LiNbO3 crystal
along the x (or y) axis, implying that the y- (or x-) and z-polarized components are the o- and
e-polarized light with the respective refractive indices of no and ne, as shown in Fig. 1.

z (optical axis) 

LiNbO3 
x 

y 

Incident 
vector field 

lens 

Fig. 1. Schematic of configuration for investigating the collapse of VOFs in an anisotropic
MgO:LiNbO3 crystal.

In this schematic, we have omitted the generation unit of fs AV-LP-VOFs. The generated
AV-LP-VOFs have a central wavelength of 800 nm, a single pulse energy of 6.0 µJ, a pulse duration
of ∼65 fs, and a “top-hat-like” profile (excluding a central singularity caused by polarization
uncertainty) with a radius of 1.5 mm. The focused AV-LP-VOF, by an achromatic lens with a
focal length of 100 mm, is normally incident on the x-cut MgO:LiNbO3 with a length of 20
mm. The intensity pattern of the field transmitted from MgO:LiNbO3 is imaged on a detector
(Beamview, Coherent Inc.) by another achromatic lens with a focal length of 200 mm.

Under the weak focusing situation, the focused AV-LP-VOF exhibits a uniform-intensity focal
ring instead of a focal spot. In the polar coordinate system (r, φ), it can be written as

E(r, φ) = A(r)(cos δêy + sin δêz). (1)

Here A(r) represents the radially-variant amplitude and can be described by a generalized
hypergeometric function. As a well approximation, A(r) can be taken as a form of A(r) =
a0r exp(−r2/2r2

0 ), where r0 is the radius of the focal ring. δ = mφ + δ0 (m is the topological
charge and δ0 is the initial phase). êy and êz are a pair of orthogonal unit vectors in the y-
and z-axes shown in Fig. 1, and indicate the polarization directions of the o- and e-polarized
components, respectively. For AV-LP-VOFwith m and δ0, the local o- and e-polarized components
in the yz plane should locate at a series of azimuthal locations φo(n) = nπ/m − δ0/m and
φe(n) = (2n + 1)π/2m − δ0/m (where n = 0, 1, ..., 2m − 1), respectively.
To theoretically explore the nonlinear propagation behavior of a VOF in the x-cutMgO:LiNbO3,

the (2+1)-dimensional vector-version nonlinear-Schrödinger equation (NLSE) should be used.

                                                                                               Vol. 26, No. 21 | 15 Oct 2018 | OPTICS EXPRESS 27729 



Under the slowly varying amplitude approximation, the vector-version NLSE can be divided into
a pair of coupled NLSEs for the o- and e-polarized components

∂ψo

∂ζ
= j∇2

⊥ψo + j
4αP
PC
o

[
|ψo |2ψo +

χ16
χ11

(
2|ψe |2ψo + ψ

2
eψ
∗
o

)]
, (2a)

∂ψe

∂ζ
= j

n0
o

n0
e

∇2
⊥ψe + j

4αP
PC
e

[
|ψe |2ψe +

χ16
χ33

(
2|ψo |2ψe + ψ

2
oψ
∗
e

)]
, (2b)

where ψo (ψe) is the dimensionless o-polarized (e-polarized) component normalized by the
total field, ψo,e(ρ, φ; ζ) = Eo,e(ρ, φ; ζ)/

√∬
[|Eo(ρ, φ; ζ)|2 + |Ee(ρ, φ; ζ)|2]ρdρdφ. ρ = r/r0 and

ζ = xλ/4πn0
or2

0 are the dimensionless cylindrical coordinates, and P = 2n0
oε0c

∬
[|Eo(ρ, φ; ζ)|2+

|Ee(ρ, φ; ζ)|2]ρdρdφ is the input power.PC
o = αλ

2/4πn0
onI

o andPC
e = αλ

2/4πn0
enI

e are the critical
powers for self-focusing, which are related to the o- and e-polarized components, respectively.
n0
o (n0

e) and nI
o = 3χ11/4(n0

o)2ε0c (nI
e = 3χ33/4(n0

e)2ε0c) are the linear refractive index and the
nonlinear refractive coefficient of the o-polarized (e-polarized) component in the uniaxial crystal,
respectively. α is in general a constant dependent on the initial field shape [32]. ε0, c and λ are
the permittivity, the speed of light and the wavelength, in the free space, respectively. On the
right-hand side of Eq. (2), the first term is the contribution from the diffraction effect described by
the transverse Laplacian ∇2

⊥ = ∂
2/∂ρ2 + 1

ρ∂/∂ρ +
1
ρ2 ∂

2/∂φ2 and the second term is attributed
to the contribution of the Kerr nonlinearity, respectively. It should be pointed out that we only
concentrate on the collapsing behavior, thus the higher-order nonlinearity has been neglected.
MgO:LiNbO3 has the physical parameters: the ordinary and extraordinary linear refractive

indices of n0
o = 2.24717 and n0

e = 2.16539 at λ = 800 nm with the Sellmeier equations [33, 34],
the nonlinear susceptibilities of χ11 = 9.79523 × 10−16 cm2/W, χ33 = 9.79521 × 10−16 cm2/W
and χ16 = 2.86026 × 10−16 cm2/W [33, 35], respectively. Clearly, MgO:LiNbO3 is a negative
uniaxial crystal (n0

o > n0
e). For MgO:LiNbO3 belonging to a trigonal (3m) symmetry system, one

should have χ11 = χ33 in theory, we have indeed χ11 ' χ33 from the measured values mentioned
above and PC

o = NPC
e = PC . Here we must point out that in Eq. (2), PC is the critical power for

a Gaussian mode instead of AV-LP-VOF, and α is also a parameter related to a Gaussian profile
and so should be taken α = 2 [32].
After introducing two parameters, defined as N = n0

o/n0
e and β = χ16/χ11 = χ16/χ33 for the

sake of description or discussion, Eq. (2) can be rewritten as

∂ψo

∂ζ
= j∇2

⊥ψo + j
8P
PC

[
|ψo |2ψo + β

(
2|ψe |2ψo + ψ

2
eψ
∗
o

)]
, (3a)

∂ψe

∂ζ
= jN∇2

⊥ψe + jN
8P
PC

[
|ψe |2ψe + β

(
2|ψo |2ψe + ψ

2
oψ
∗
e

)]
. (3b)

In fact, N and β are used to classify the linear and nonlinear anisotropies, respectively. In detail,
N = 1 (N , 1) indicates the linear isotropy (anisotropy); β = 1/3 (β , 1/3) corresponds to the
nonlinear isotropy (anisotropy).
All the simulations are carried out based on Beam Propagation Method [36], which is used

to numerically solve Eq. (2) or Eq. (3) to model the collapsing behavior of AV-LP-VOFs in
the anisotropic MgO:LiNbO3. Differently from the conventional isotropic Kerr medium, to
clarify the contributions of both linear and nonlinear anisotropies to the collapsing behaviors
of AV-LP-VOFs in the anisotropic nonlinear crystal, we perform the detailed simulations (see
Appendix). After summarizing all the simulation results, we get the following conclusions.

(i) In the media with linear isotropy (no = ne) and nonlinear anisotropy, when β < 1/3, AV-
LP-VOF with m and δ0 will collapse into 4m deterministic filaments exhibiting the C4m rotation
symmetry, located at the azimuthal locations of φ(n) = nπ/2m−δ0/m (where n = 0, 1, ..., 4m−1);

                                                                                               Vol. 26, No. 21 | 15 Oct 2018 | OPTICS EXPRESS 27730 



when β > 1/3 corresponding to the BaF2 crystal, AV-LP-VOF with m and δ0 will collapse
into 4m deterministic filaments exhibiting the C4m rotation symmetry, located at the azimuthal
locations of φ(n) = (2n + 1)π/4m − δ0/m (where n = 0, 1, ..., 4m − 1).

(ii) In the media with both linear and nonlinear anisotropies, when β < 1/3 corresponding to
the x-cut MgO:LiNbO3 crystal, AV-LP-VOF with m and δ0 will collapse into 2m deterministic
filaments located at the azimuthal locations of φ(n) = nπ/m − δ0/m (where n = 0, 1, ..., 2m − 1);
when β > 1/3, AV-LP-VOF with m and δ0 will collapse into 4m deterministic filaments exhibiting
the C4m rotation symmetry, located at the azimuthal locations of φ(n) = (2n + 1)π/4m − δ0/m
(where n = 0, 1, ..., 4m − 1).

(iii) For all the above cases, the appearance of filamentation requires that: the locations of
filaments must satisfy the two conditions where the local linear polarization is remained and the
ellipticity has a negative slope, however, which are necessary but not sufficient. One should be
pointed out that at the locations of filaments, the polarization states of light correspond to the
o-polarization in the negative uniaxial crystal.

4. Experiments

Firstly, we focus on the collapsing behaviors of AV-LP-VOFs (m = 1 and 2) for three different
initial phases (δ0 = 0, π/4 and π/2), as shown in Fig. 2. One should be pointed out that for two
particular cases of (m, δ0) = (1, 0) and (m, δ0) = (1, π/2), AV-LP-VOFs described by Eq. (1) are
RP-VOFs and AP-VOFs, respectively. Any AV-LP-VOF has a uniform intensity pattern excluding
a central polarization singularity (first row). When a horizontal polarizer is used, implying that
the allowed polarized component corresponds to the o-polarized component in the MgO:LiNbO3

== = = = =

o

Fig. 2. The collapsing behaviors of AV-LP-VOFs (m = 1 and 2) for three different initial
phases (δ0 = 0, π/4 and π/2). Measured patterns of total intensity and o-polarized component
of the created vector fields in the x-cut MgO:LiNbO3 crystal are shown in the first and
second rows. The third and fourth rows correspond to the measured and simulated collapsing
patterns, respectively.
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crystal, all AV-LP-VOFs exhibit the fan-like extinction intensity patterns with 2m fan-like regimes
(second row). After the focused AV-LP-VOFs with m = 1 and 2 interact with the anisotropic
MgO:LiNbO3 crystal, respectively, the measured results of the produced collapsing patterns
in the third row are in good agreement with the simulated ones in the fourth row. Clearly, the
number of filaments is 2m depending only on m. The collapsing field pattern for m = 1 is rotated
counterclockwise with a step of π/4 as δ0 increases from δ0 = 0 to δ0 = π/4 and π/2 (third and
fourth rows). The collapsing field pattern for m = 2 is also rotated counterclockwise with a step
of π/8 as δ0 increases from δ0 = 0 to δ0 = π/4 and π/2 (third and fourth rows). In particular, the
filaments always occur at a series of azimuthal locations, where the polarizations of optical field
are o-polarized in the LiNbO3 crystal.
Secondly, we investigate the collapsing behaviors of the focused AV-LP-VOFs with higher

topological charges. As examples, Fig. 3 shows themeasured and simulated results of the collapsed
AV-LP-VOFs with m = 3, 4, 5, 6 for δ0 = 0 and π/2. These AV-LP-VOFs also have uniform
intensity patterns excluding a central polarization singularity (not shown). The o-polarized
components of the initial AV-LP-VOFs exhibit fan-like extinction patterns with 2m-fold rotation
symmetry (the first and fourth columns). The measured collapsing patterns of the focused AV-
LP-VOFs in the second (fifth) column are in good agreement with the simulated ones in the third
(sixth) column. Clearly, the focused AV-LP-VOFs with m (= 3, 4, 5, 6) produce 2m (= 6, 8, 10, 12)
deterministic filaments, respectively, for either δ0 = 0 or δ0 = π/2. The collapsing pattern exhibits
a 2m-fold rotation (C2m) symmetry. The simulated and measured results demonstrate again the
fact that the filaments are always located at the azimuthal locations, where the polarizations of

o o

Fig. 3. The collapsing behaviors of AV-LP-VOFs (m = 3, 4, 5, 6) for two different initial
phases (δ0 = 0, π/2). The first three columns correspond to four AV-LP-VOFs (m = 3, 4, 5,
6) with δ0 = 0, while the last three columns correspond to four AV-LP-VOFs (m = 3, 4, 5, 6)
with δ0 = π/2. Measured patterns of o-polarized component of the created AV-LP-VOFs in
the uniaxial crystal are shown in the first and fourth columns. The second (fifth) and third
(sixth) columns correspond to the measured and simulated collapsing patterns, respectively.
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AV-LP-VOFs are o-polarized.
Thirdly, all the above filamentation only takes place in the x-cut MgO:LiNbO3 crystal whose

optic axis is directed vertically, as shown in Fig. 1. To explore the relationship between the
collapsing pattern of AV-LP-VOF and the orientation of the x-cut MgO:LiNbO3 crystal, we can
change the angle θ between the vertical direction and the optic axis (z axis) of the crystal by
rotating the x-cut MgO:LiNbO3 crystal around its x axis. As shown in Fig. 1, the optical axis (z
axis) is directed vertically, which is defined as θ = 0◦. As two examples, Figs. 4(a) and 4(b) show
the evolutions of the measured collapsing patterns of RP-VOF (m = 1, δ0 = 0) and AV-LP-VOF
(m = 2, δ0 = 0) with θ, respectively. When θ is changed from θ = 0◦ to θ = 180◦ by a step of
10◦, the collapsing patterns are rotated counterclockwise in sequence by an angle of 10◦/m and
the collapsing location always corresponds the ordinary polarization in the uniaxial crystal in
each case.
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Fig. 4. The relationship between the collapsing patterns of AV-LP-VFs and the orientation of
the crystal. The collapsing patterns of RP-VOF (m = 1, δ0 = 0) and AV-LP-VOF (m = 2,
δ0 = 0) rotated with the optic axis of the MgO:LiNbO3 crystal are shown in Figs. 4(a) and
4(b), respectively.

Summarizing all the above experimental results, we get the following conclusions. For a AV-
LP-VOF with a given m, its focused field is normally incident into an x-cut uniaxial MgO:LiNbO3:
(i) the anisotropy of nonlinear media can result in the axial-symmetry breaking of the nonlinear
interaction; (ii) AV-LP-VOF undergoes the collapse to converge into the 2m deterministic filaments
depending solely on m; (iii) the collapsing pattern exhibits a 2m-fold rotation (C2m) symmetry;
(iv) the filaments are always located at the azimuthal locations φo(n), where the local polarizations
correspond to the ordinary polarization in the uniaxial crystal. These experimental results are
in well agreement with the simulation results described in Section 3 and Appendix as follows:
In the x-cut MgO:LiNbO3 crystal (β < 1/3), AV-LP-VOF with m and δ0 will collapse into
2m deterministic filaments located at the azimuthal locations of φ(n) = nπ/m − δ0/m (where
n = 0, 1, ..., 2m − 1) and the polarization states at the locations of filaments correspond to the
o-polarization in the negative uniaxial crystal.

5. Discussion

The simulation results in Appendix also show that collapsing behaviors of AV-LP-VOF with
m and δ0 in the media with linear isotropy (N = 1) and nonlinear anisotropy (β < 1/3 and
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β > 1/3). To confirm our simulation results in experiment, we find a nonlinear medium, BaF2,
which is a crystal to have the linear isotropy but the nonlinear anisotropy (β > 1/3). Figure 5
shows the collapsing patterns of AV-LP-VOF with m = 1 but different δ0 = 0, π/4, π/2 and
3π/2 in BaF2 under the lower input power. Clearly, the measured patterns are in good agreement
with the simulated ones in BaF2, as conclusions summarized in Appendix, AV-LP-VOF with
m and δ0 will collapse into 4m deterministic filaments, located at the azimuthal locations of
φ(n) = (2n+ 1)π/4m− δ0/m (where n = 0, 1, . . . , 4m− 1), in the medium with the linear isotropy
but nonlinear anisotropy (β > 1/3).

d0 = p/4d0 = 0 d0 = p/2 d0 = 3p/4
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Fig. 5. Measured and simulated collapsing behaviors of AV-LP-VFs with m = 1 but with
different δ0 = 0, π/4, π/2 and 3π/2 in BaF2 with the linear isotropy but nonlinear anisotropy
(β > 1/3).

Although the simulation can give the collapsing behaviors of AV-LP-VOF in various nonlinear
media, the physics behind themultiple filamentation has still no clear picture. To clearly understand
the physics behind the collapse of AV-LP-VOF, it will be very beneficial and valuable to apply
both the non-depletion approximation theroy and the azimuthal modulational instability (AMI)
theroy to Eq. (3). Multiple filamentation requires the simultaneous spatial confinements in both
the radial and azimuthal dimensions. The self-confinement in the radial dimension is due to the
focal ring. However, it is of great interest and of crucial importance to reveal the mechanism
behind the axial symmetry breaking that leads to the multiple filamentation. Therefore, we ignore
the radial terms ∂2/∂ρ2 and ∂/∂ρ in the transverse Laplacian ∇2

⊥, while concentrate only on the
azimuthal term ∂2/∂φ2 in Eq. (3).

5.1. Non-depletion approximation analysis

The Kerr medium is divided into M equal-length thin segments (each thin segment has a
normalized length of Z = L/M), so that the non-depletion approximation is valid within any thin
segment. After the focused AV-LP-VOF described in Eq. (3) passing though the 1st segment of
the anisotropic nonlinear medium, based on Eq. (3), the increases of ψ0 and ψe should be

∆ψo = − j
[
m2 − B

(
cos2 δ + 3β sin2 δ

)]
Z cos δ, (4a)

∆ψe = − jN
[
m2 − B

(
sin2 δ + 3β cos2 δ

)]
Z sin δ, (4b)

where B = 8P/PC . However, we must point out that PC is only the critical power under the
incidence of Gaussian beam. The critical power PC

m of AV-LP-VOF with the topological charge m
has a connection with PC as PC

m = 6m2PC/5 [37], so the parameter B for AV-LP-VOF should be
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rewritten as B = 48m2P/5PC
m . We easily yield the first-order derivative of the intensity increase

∆I = |∆ψo |2 + |∆ψe |2 to φ as follows

∂∆I
∂φ
=

1
6

mZ2W sin(2δ), (5a)

with

W = UV cos(2δ) − (N2 − 1)(U + V cos2 δ)V sin2 δ, (5b)

U = 4m2 − 3B(1 + β) = 4m2[1 − 36P(1 + β)/5PC
m], (5c)

V = 3B(1 − 3β). (5d)

We always have U < 0 for any m, because P/PC
m > 1 is required for the collapsing of AV-LP-VOF.

To determine the azimuthal locations of filamentation, the key is the sign of the second-order
derivative of ∆I to φ, we have

∂2∆I
∂φ2 =

1
6

mZ2
[
∂W
∂φ

sin (2δ) + 2mW cos (2δ)
]
. (6)

We will analytically discuss the collapsing of AV-LP-VOFs in two cases below.

5.1.1. In nonlinear media with linear isotropy

We discuss a special case when the nonlinear medium has the linear isotropy (N = 1), we have
from Eqs. (5) and (6)

∂∆I
∂φ
=

1
12

mZ2UV sin(4δ), (7a)

∂2∆I
∂φ2 =

1
3

m2Z2UV cos(4δ). (7b)

We can divide this case into three subcases of (i) β = 1/3, (ii) β < 1/3 and (iii) β > 1/3.
Subcase–(i) of β = 1/3.
This corresponds to the traditional isotropic Kerr nonlinear medium, we always have

∂∆I/∂φ ≡ 0 and ∂2∆I/∂φ2 ≡ 0 in Eq. (7), implying that any azimuthal position is equiv-
alent or indistinguishable for any AV-LP-VOF. Therefore, any purely ideal AV-LP-VOF can never
produce the deterministic filaments, which is in well agreement with the simulation (first column
of Fig. 6 in Appendix) and [29]. Accordingly, the collapsing of a practical AV-LP-VOF originates
from the random fluctuation (second column of Fig. 6 and [29]).
Subcase–(ii) of β < 1/3.
We have V > 0 and U < 0 in Eq. (7). When sin(4δ) = 0, i.e. 4δ = 2nπ or 4δ = (2n + 1)π

(where n is an integer), ∂∆I/∂φ = 0 in Eq. (7a). Clearly, at φ(n) = nπ/2m − δ0/m (where
n = 0, 1, ..., 4m − 1), we have ∂2∆I/∂φ2 < 0 in Eq. (7b), implying that the filaments of AV-
LP-VOF will be produced because their optical intensities are maximum. In contrast, when
4δ = (2n+1)π, we have ∂2∆I/∂φ2 > 0 in Eq. (7b), implying that at φ(n) = (2n+1)π/4m− δ0/m
(where n = 0, 1, ..., 4m − 1) the filaments cannot be produced because their optical intensities are
minimum. These analytic results are in completely agreement with the simulation results.
Subcase–(iii) of β > 1/3.
This corresponds to the BaF2 crystal, we haveV < 0 andU < 0 in Eq. (7). Tomake ∂∆I/∂φ = 0

in Eq. (7a), it is required sin(4δ) = 0, implying that 4δ = 2nπ or 4δ = (2n + 1)π (where n
is an integer). Clearly, when 4δ = 2nπ, we have ∂2∆I/∂φ2 > 0 in Eq. (7b), implying that at
φ(n) = nπ/2m− δ0/m (where n = 0, 1, ..., 4m− 1) the filaments cannot be produced because their
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optical intensities are minimum. In contrast, when 4δ = (2n + 1)π, we have ∂2∆I/∂φ2 < 0 in
Eq. (7b), implying that at φ(n) = (2n + 1)π/4m − δ0/m (where n = 0, 1, ..., 4m − 1) the filaments
of AV-LP-VOF will be produced because their optical intensities are maximum, which are in
completely agreement with both the experimental results in the BaF2 crystal and the simulation
results.

5.1.2. In nonlinear media with both linear and nonlinear anisotropies

We discuss the relatively general case when the nonlinear medium has both linear anisotropy
(N > 1) and the nonlinear anisotropy β , 1/3. To make ∂∆I/∂φ = 0 in Eq. (5), we require to
satisfy Condition-I of sin(2δ) = 0 or Condition-II of W = 0. We can classify into two subcases:
Subcase-(i) of β < 1/3 and Subcase-(ii) of β > 1/3.
Subcase–(i) of β < 1/3 corresponding to the MgO:LiNbO3 crystal (V > 0, N > 1).
Under the Condition-I of sin(2δ) = 0 corresponding to 2δ = nπ (where n = 0, 1, ..., 4m−1), we

can confirm ∂2∆I/∂φ2 < 0 at φ(n) = nπ/2m− δ0/m (see Appendix for the details), implying that
there has the possibility of the filamentation for AV-LP-VOF at the 4m azimuthal locations because
their intensities are local maximum. However, this analytic result agrees with the simulated
results for the initial collapse stage (see third and fourth columns of Fig. 8 in Appendix), but has
some difference from the experimental and final simulated results (Fig. 2) that the observed final
filaments occur at the 2m azimuthal locations of φ(n) = nπ/m− δ0/m (where n = 0, 1, ..., 2m−1),
which can be understood below. The two conditions for the filamentation, ∂∆I/∂φ = 0 and
∂2∆I/∂φ2 < 0, are necessary but not sufficient. Without loss of generality, we select RP-VOF
as an example. For the linear anisotropy, we consider the negative uniaxial crystal (N0

o > N0
e ,

N > 1). The simulated linear propagation behavior of RP-VOF in the negative uniaxial media
with (N > 1, β = 0) is very similar to the intensity profile in lower left corner of Fig. 8, which
shows the two strong spots at φ = 0 and π due to the anisotropic propagation in the anisotropic
medium. Thus, among the four possible locations (φ = 0, π/2, π and 3π/2) determined by the
above filamentation conditions, only at the two locations (φ = 0 and π) the filamentation is
allowed.
Under the Condition-II, we can conform that at azimuthal locations determined by W = 0,

∂2∆I/∂φ2 > 0 (see Appendix for the details), suggesting that the filaments for the AV-LP-VOF
can never be produced because their intensities are minimum.
Subcase–(ii) of β > 1/3.
Under the Condition-I of sin(2δ) = 0 corresponding to 2δ = nπ (where n = 0, 1, ..., 4m−1), we

can confirm ∂2∆I/∂φ2 > 0 at φ(n) = nπ/2m − δ0/m (see Appendix), meaning that the filaments
cannot be produced because their intensities are minimum.
Under the Condition-II, we can confirm ∂2∆I/∂φ2 < 0 at azimuthal locations determined

by W = 0 (see Appendix), suggesting that the filaments for AV-LP-VOF can be produced
because their intensities are maximum. For the weak linear anisotropy (N → 1), we can have
cos(2δ) ≈ 0 from W = 0, which is very similar to the linear isotropic case discussed above.
Thus at φ(n) ≈ nπ/2m + π/4m − δ0/m, the filaments can be produced, which agrees with the
simulation result shown in Appendix.

5.2. Plane wave analysis

We now will use the plane wave analysis method to deepen the understanding of the filamentation
of the AV-LP-VOF propagation in the nonlinear media again. First, we analytically find the
steady-state solutions of Eq. (3) using the method described in detail in [7–9]. Then, we apply
the azimuthal perturbation to one of the steady-state solutions. Finally, we can find the azimuthal
modulational instability (AMI) growth rate γm (the detailed calculation process has been shown
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in Appendix) as

γ2
m =

m2

ρ̄2

{
B

[(
N2 cos2 δ + sin2 δ

)
+

√(
N2 cos2 δ − sin2 δ

)2
+ N2(3β)2 sin2(2δ)

]
− m2

ρ̄2

}
,

(8)
where ρ̄ is the mean radius of the focal field ring.

To determine the azimuthal locations of the filaments, the key is to find the maximum value of
γm. With Eq. (8), we will analyze the number and location of filaments in the two cases below.

5.2.1. In nonlinear media with linear isotropy

We discuss a special case when the nonlinear medium has the linear isotropy (N = 1), Eq. (8)
becomes into

γ2
m =

m2

ρ̄2

{
B

[
1 +

√
1 + (3β + 1)(3β − 1) sin2(2δ)

]
− m2

ρ̄2

}
. (9)

We can divide this case into three subcases of (i) β = 1/3, (ii) β < 1/3 and (iii) β > 1/3.
Subcase–(i) of β = 1/3.
This corresponds to the traditional isotropic Kerr nonlinear medium, we have γ2

m =

( m2/ρ̄2)(2B − m2/ρ̄2) in Eq. (9), implying that any azimuthal position is equivalent or in-
distinguishable for any AV-LP-VOF. Therefore, any purely ideal AV-LP-VOF can never produce
the deterministic multiple filamentation, which is in excellent agreement with the simulation
(first column of Fig. 6 in Appendix) and [29].

Subcase–(ii) of β < 1/3.
In this subcase, when sin2(2δ) = 0, γ2

m in Eq. (9) reaches itsmaximum (γ2
m)max = (m2/ρ̄2)(2B−

m2/ρ̄2). Clearly, the filaments of AV-LP-VOF will be produced at φ(n) = nπ/2m − δ0/m (where
n = 0, 1, ..., 4m − 1). These analytic results are in completely agreement with the simulation
results and the non-depletion approximation analysis.
Subcase–(iii) of β > 1/3.
This corresponds to the BaF2 crystal. To make γ2

m in Eq. (9) reach its maximum (γ2
m)max =

( m2/ρ̄2)[B(1 + 3β) − m2/ρ̄2], it is required sin2(2δ) = 1, implying that the filaments of AV-LP-
VOF will be produced at φ(n) = (2n + 1)π/4m − δ0/m (where n = 0, 1, ..., 4m − 1), which are in
completely agreement with the experimental results in the BaF2 crystal, the simulation results
and the non-depletion approximation analysis.

5.2.2. In nonlinear media with both linear and nonlinear anisotropies

We now discuss the relatively general case when the nonlinear medium has both linear anisotropy
(N > 1) and the nonlinear anisotropy β , 1/3. To determine the azimuthal locations of the
filaments, the key is also to find the maximum value of γ2

m in Eq. (8). Figure 9 illustrates the
AMI growth rate γ2

m in two subcases: Subcase–(i) of β < 1/3 and Subcase–(ii) of β > 1/3.
Subcase–(i) of β < 1/3 corresponding to the MgO:LiNbO3 crystal.
The analytical results of RP-VOF given by Eq. (8) are shown in Fig. 9(c). When N = 1,

β < 1/3, (γ2
m)max of RP-VOF are located at the azimuthal locations of φ = 0, π/2, π and 3π/2,

which are owing to the nonlinear anisotropy (β < 1/3). However, when N > 1, β < 1/3, (γ2
m)max

of RP-VOF are located at the azimuthal locations of φ = 0 and π, which originate from the
collaborative contribution of the linear and nonlinear anisotropies to the axial-symmetry breaking.
Clearly, the symmetry breaking caused by the linear anisotropy (N > 1) results in that four
(γ2

m)max of RP-VOF in the linear isotropic nonlinear medium become into two (γ2
m)max in the both

linear and nonlinear anisotropic medium. In fact, AV-LP-VOF will collapse into 2m deterministic
filaments located at the azimuthal locations of φ(n) = nπ/m − δ0/m (where n = 0, 1, ..., 2m − 1),
which are in completely agreement with both the experimental results in the MgO:LiNbO3 crystal
and the simulation results.
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Subcase–(ii) of β > 1/3.
The analytical results of RP-VOF given by Eq. (8) are shown in Fig. 9(b). The AMI growth

rate (γ2
m)max of RP-VOF will determine four filaments in the media (N = 1.038, β > 1/3), which

are approximately located at the azimuthal locations of φ ≈ π/4, 3π/4, 5π/4, 7π/4, although
they look the same as the case (N = 1, β > 1/3). In fact, the locations of filaments depend on
the strength of linear anisotropy (the value of N), as demonstrated by the analytical result of the
case (for lager N = 1.1) shown in Fig. 9(b) are in good agreement with the numerical simulation
shown in the last column of Fig. 8.
It should be emphasized that both non-depletion approximation analysis and plane-wave

analysis results are completely consistent with our simulation and experimental results, which
are of great significance for understanding the physics behind the collapsing behaviors of the
polarization-structured optical fields in the optically anisotropic nonlinear media.
Finally, we briefly discuss the case when the propagation of light is not along 0◦ or 90◦ with

respect to the optic axis of the uniaxial crystal. As is well known, in this case there is the walk-off
effect, which will result in the spatial separation of the o- and e-polarized light. However, this
case is relatively complicated, which is beyond the scope of this paper. If the walk-off effect is
remarkable, the o- and e-polarized light may exhibit the large spatial separation, the coupling
between them becomes very weak, leading to the fact that the o- and e-polarized light produces
the filaments respectively to form two separate groups of filaments.

6. Conclusion

To realize the controllable field collapsing, the crucial problem is able to actively break the
symmetry of light-matter interaction and to suppress the random noise simultaneously. We present
an idea to actively control the optical field collapsing based on the symmetry broken by the
synergy of optical anisotropy and polarization spatial structure. The simulated and experimental
results demonstrate that our idea is indeed a very effective method for controlling the optical
field collapsing and has the robust feature against random noise.

In experiment, we explore the novel collapsing behaviors of the femtosecond AV-LP-VOFs in
MgO:LiNbO3 with both linear anisotropy (N = n0

o/n0
e > 1) and nonlinear anisotropy (β < 1/3);

the results show that the m-charged AV-LP-VOF produces 2m filaments located at azimuthal
positions of φ(n) = nπ/m − δ0/m (where n = 0, 1, ..., 2m − 1). In addition, we also explore
the collapsing behaviors of the femtosecond AV-LP-VOFs in BaF2 with the linear isotropy
(N = n0

o/n0
e = 1) but nonlinear anisotropy (β > 1/3); the results show that the m-charged AV-LP-

VOF produces 4m filaments located at azimuthal positions of φ(n) = (2n+1)π/4m− δ0/m (where
n = 0, 1, ..., 4m − 1). In particular, we clearly reveal the physics behind the multiple filamentation
of AV-LP-VOFs in various nonlinear media, based on the non-depletion approximation analysis
and the plane-wave analysis.

Our idea has offered the route to produce the controllable and even robust multiple filamentation
in the different nonlinearmedia, thereby facilitating the future development of additional surprising
applications. For example, (i) the dynamic filamention produced by rotating the structured media
or optical fields, which provides a way for the realization of the dynamic three-dimensional
micro-machining; (ii) fabricating the virtual photonic structures, which will be used to manipulate
real time the other beams; (iii) the control of multiple filamentation is also helpful for enhancement
of terahertz and white light radiation.

APPENDIX

7. Numerical simulations

In this appendix, we will first give the numerical simulations in details, for the collapsing
behaviors of AV-LP-VOFs in an anisotropic nonlinear medium.
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All the simulations are carried out based on Beam Propagation Method, which is used to
numerically solve Eq. (2) or Eq. (3) to model the collapsing behavior of AV-LP-VOFs in the
anisotropic MgO:LiNbO3. We classify into two main cases for the detailed discussion as follows.
First, in nonlinear media with linear isotropy (N = 1, i.e. n0

o = n0
e) but nonlinear anisotropy

(β , 1/3). Second, in nonlinear media with linear anisotropy (N > 1, i.e. n0
o > n0

e) and nonlinear
anisotropy (β , 1/3).
We should point out that if the spatial random noise is added for simulation, we keep the

random noise has a level of 10% amplitude.
Without loss of generality, for all the simulations in this appendix, we select RP-VOF, which is

a special case of AV-LP-VOF with m = 1 and δ0 = 0, as an example. For the linear anisotropy,
we consider the negative crystal (N > 1, i.e. n0

o > n0
e).

7.1. In nonlinear media with linear isotropy but nonlinear anisotropy

In this case, we take n0
o = n0

e = 2.24717 for the linear isotropy and χ11 = χ33 = 9.79522 × 10−16

cm2/W for the nonlinear anisotropy. We classify into three subcases based on the value of β: (i)
β = 1/3, (ii) β = 0.292 < 1/3, (iii) β = 0.374 > 1/3.
For Subcase–(i) of β = 1/3, implying the nonlinear isotropy with χ11 = χ33 = 9.79522×10−16

cm2/W and χ16 = 3.26507 × 10−16 cm2/W, the simulation results given by Eq. (3) are shown in
first and second columns of Fig. 6. In fact, in this subcase, the nonlinear medium degenerates
into an isotropic Kerr medium. Clearly, the ideal RP-VOF always remains the axially symmetric
doughnut ring, indicating that the ideal RP-VOF cannot converge to the deterministic multiple
filaments; but the collapsing filaments produced by RP-VOF with the random noise have the
uncertainty which is dominated by the initial random symmetry breaking, similar to the collapses
of optical vortices and polarization vortices. In fact, any ideal AV-LP-VOF also remains the
axially symmetric doughnut ring but cannot converge to the deterministic multiple filaments; the
collapsing filaments produced by AV-LP-VOF with the random noise have the uncertainty.
For Subcase–(ii) of β = 0.292 < 1/3, implying χ11 = χ33 = 9.79522 × 10−16 cm2/W and

χ16 = 2.86026 × 10−16 cm2/W for the simulation, these parameters are in fact the practical
nonlinear susceptibilities of MgO:LiNbO3. The simulation results given by Eq. (3) are shown
in the third and fourth columns of Fig. 6. RP-VOF collapses into four deterministic filaments
located at the azimuthal locations of φ = 0, π/2, π, 3π/2. For AV-LP-VOF with m and δ0, it will
collapse into 4m deterministic filaments exhibiting the C4m rotation symmetry, located at the
azimuthal locations of φ(n) = nπ/2m − δ0/m (where n = 0, 1, . . . , 4m − 1).
For Subcase–(iii) of β = 0.374 > 1/3, we have χ11 = χ33 = 9.79522 × 10−16 cm2/W and

χ16 = 3.66341 × 10−16 cm2/W. In fact, BaF2 belongs to such a kind of crystal, although its
parameters are different from those above. The simulation results given by Eq. (3) are shown in
fifth and sixth columns of Fig. 6. RP-VOF collapses into four deterministic filaments located at
the azimuthal locations of φ = π/4, 3π/4, 5π/4, 7π/4. For AV-LP-VOF with m and δ0, it will
collapse into 4m deterministic filaments exhibiting the C4m rotation symmetry, located at the
azimuthal locations of φ(n) = (2n + 1)π/4m − δ0/m (where n = 0, 1, . . . , 4m − 1).

To clearly show the evolution of azimuthal-variant polarization states during the collapsing of
RP-VOF in the medium with the linear isotropy but the nonlinear anisotropy, we simulate the
ellipticity characterized by the Stocks parameter S3, as shown in Fig. 7. Obviously, the ellipticity
of the local polarization state has a tendency to increase induced by the coupling between
the two orthogonally polarized components in the nonlinear anisotropic media, which exhibits
rich polarization states, including linear polarization, right-handed and left-handed elliptical
polarization. For RP-VOF, the local polarization states have no change to keep the initial linear
polarization at eight special azimuthal locations of φ(n) = nπ/4 (where n = 0, 1, . . . , 7) not only
for the case of β < 1/3 but also for the case of β > 1/3. We can deduce that for the general
case of AV-LP-VF with m and δ0, the local polarization states have no change while still keep
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Fig. 6. The simulated collapsing behaviors of RP-VOF (AV-LP-VOF with m = 1 and δ0 = 0)
in the nonlinear media with the linear isotropy but the nonlinear anisotropy. For comparison,
the first and second columns show the collapsing behavior of RP-VOF in the traditional
isotropic Kerr medium.

the initial linear polarization at 8m special azimuthal locations of φ(n) = nπ/4m − δ0/m (where
n = 0, 1, . . . , 8m − 1). After comparing Fig. 7 with Fig. 6, we find that the filaments locate at the
azimuthal locations, where the local linear polarizations are remained and the ellipticity has a
negative slope in both cases of β < 1/3 and β > 1/3.
Clearly, the nonlinear anisotropy dominates the collapsing behaviors of AV-LP-VOFs.

7.2. In nonlinear media with both linear and nonlinear anisotropies

In this case, we have n0
o = 2.24717 and n0

e = 2.16539 for the linear anisotropy, and χ11 = χ33 =
9.79522 × 10−16 cm2/W for the nonlinear anisotropy. We also classify into three subcases: (i)
β = 1/3, (ii) β = 0.292 < 1/3, (iii) β = 0.374 > 1/3.
In Subcase–(i) of β = 1/3, i.e. the nonlinear isotropy with χ11 = χ33 = 9.79522 × 10−16

cm2/W and χ16 = 3.26507 × 10−16 cm2/W as well as the linear anisotropy with n0
o = 2.24717

and n0
e = 2.16539, the simulation results given by Eq. (2) are shown in the first and second

columns of Fig. 8. After comparing with Fig. 6, we find that the self-focusing effect caused by
the isotropic nonlinearity makes RP-VOF have a tendency converging to two filaments located at
azimuthal locations of φ = 0 and π. In order to finally achieve two filaments, however, the longer
interaction distance in the medium should be needed. This filamentation originates from the
axial-symmetry breaking caused by the initial linear anisotropy. The weak linear anisotropy leads
to the weak symmetry breaking, therefore, the final filamentation needs the longer nonlinear
interaction distance.
In Subcase–(ii) of β = 0.292 < 1/3, we have n0

o = 2.24717 and n0
e = 2.16539, χ11 = χ33 =

9.79522 × 10−16 cm2/W and χ16 = 2.86026 × 10−16 cm2/W, all of these are just the practical
parameters of the x-cut MgO:LiNbO3. The simulation results given by Eq. (2) are shown in
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Fig. 7. The simulated evolution S3 of the azimuthal-variant polarization states for RP-VOF
(AV-LP-VF with m = 1 and δ0 = 0) in the media with the linear isotropy but the nonlinear
anisotropy. (a) β = 0.292 > 1/3 and (b) β = 0.374 > 1/3.

the third and fourth columns of Fig. 8. In the initial collapse stage, RP-VOF collapses into four
deterministic filaments located at the azimuthal locations of φ = 0, π/2, π and 3π/2, which is
the same as Fig. 6. However, RP-VOF finally collapses into two deterministic filaments located at
the azimuthal locations of φ = 0 and π, which is in good agreement with the experimental results
in Fig. 2 of the main text. This originates from the collaborative contribution of the linear and
nonlinear anisotropies to the axial-symmetry breaking. Clearly, the symmetry breaking caused by
the linear anisotropy results in that the four filaments of RP-VOF in the linear isotropic nonlinear
medium become into the two filaments in the medium with both linear and nonlinear anisotropies.
In fact, for AV-LP-VOF with m and δ0, it will collapse into 2m deterministic filaments located at
the azimuthal locations of φ(n) = nπ/m − δ0/m (where n = 0, 1, . . . , 2m − 1).
In Subcase–(iii) of β = 0.374 > 1/3, we have n0

o = 2.24717 and n0
e = 2.16539, χ11 = χ33 =

9.79522 × 10−16 cm2/W and χ16 = 3.66341 × 10−16 cm2/W. The simulation results given by
Eq. (2) are shown in fifth and sixth columns of Fig. 8. RP-VOF collapses into four deterministic
filaments, which are approximately located at the azimuthal locations of φ ≈ π/4, 3π/4, 5π/4,
7π/4, although they look the same as the fifth and sixth columns of Fig. 6. In fact, the locations
of filaments depend on the strength of linear anisotropy (value of N), as demonstrated by the
simulation result in last column of Fig. 8 (for larger N = 1.1) and the analytical result below. For
AV-LP-VOF with m and δ0, it will collapse into 4m deterministic filaments, but do not exhibit the
C4m rotation symmetry.

8. Non-depletion approximation analysis results

We have given the experimental results and the detailed simulation results in various cases. To
clearly understand the physics behind the collapse of AV-LP-VOF, the analytic results should be
more beneficial. We also classify into two main cases for the detailed discussion.

8.1. In nonlinear media with linear isotropy but nonlinear anisotropy

For this case, the analytic discussions are very simple. The discussions in the main text are
already enough, so there is no need to repeat them.

8.2. In nonlinear media with both linear and nonlinear anisotropies

We discuss the relatively general case when the nonlinear medium has the linear anisotropy
(N > 1) and the nonlinear anisotropy β , 1/3, simultaneously. To make ∂∆/∂φ in Eq. (5a), we
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Fig. 8. The simulated collapsing behaviors of RP-VOF (AV-LP-VOF with m = 1 and δ0 = 0)
in the media with both the linear and nonlinear anisotropies. For comparison, the first and
second columns show the collapsing behaviors of RP-VOF in the media with the linear
anisotropy but the nonlinear isotropy β = 1/3. In particular, the last column shows the
collapsing behavior of RP-VOF with the larger linear anisotropy (N = 1.1).

require to satisfy Condition-I of sin(2δ) = 0 or Condition-II of W = 0. We can classify into two
subcases: Subcase-(i) of β < 1/3 and Subcase-(ii) of β > 1/3.
Subcase–(i) of β < 1/3 corresponds to the MgO:LiNbO3 crystal (V > 0). Under Condition-I

of sin(2δ) = 0, with δ = mφ + δ0, we have φ(n) = nπ/2m − δ0/m (where n = 0, 1, ..., 4m − 1).
We will now determine the sign of ∂2∆I/∂φ2

��
sin(2δ)=0 from Eqs. (5) and (6)

∂2∆I
∂φ2

����
sin(2δ)=0

=
1
3

m2Z2
{

UV, when 2δ = 2nπ
N2UV, when 2δ = 2nπ + π (10)

Under the Condition-I of sin(2δ) = 0, due to U < 0 and V > 0, hence ∂2∆I/∂φ2
��
sin(2δ)=0 < 0.

Therefore, at the azimuthal locations determined by Condition-I of sin(2δ) = 0, the filaments can
be produced.
Subcase–(i) of β < 1/3 corresponds to the MgO:LiNbO3 crystal (V > 0). UnderCondition-II

of W = 0, we will now determine the sign of ∂2∆I/∂φ2
��
W=0 from Eqs. (5) and (6).
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W = 0

⇒ UV cos (2δ) − (N2 − 1)
(
U + V cos2 δ

)
V sin2 δ = 0

⇒ U cos (2δ) = (N2 − 1)
(
U + V cos2 δ

)
sin2 δ

⇒ U − 2U sin2 δ = (N2 − 1)U sin2 δ + (N2 − 1)V sin2 δ cos2 δ

⇒ U − 2U sin2 δ − (N2 − 1)U sin2 δ = (N2 − 1)V sin2 δ cos2 δ

⇒ U −U sin2 δ − N2U sin2 δ = (N2 − 1)V sin2 δ cos2 δ

⇒ U cos2 δ − N2U + N2U cos2 δ = (N2 − 1)V sin2 δ cos2 δ

⇒ U cos2 δ + N2U cos2 δ − (N2 − 1)V sin2 δ cos2 δ = N2U

⇒
[
(N2 + 1)U − (N2 − 1)V sin2 δ

]
cos2 δ = N2U

⇒ −(N2 − 1)V = U
N2 sin2 δ − cos2 δ

sin2 δ cos2 δ
. (11)

∂W
∂φ
=
∂

∂φ

[
UV cos (2δ) − (N2 − 1)

(
U + V cos2 δ

)
V sin2 δ

]
= − 2mUV sin (2δ) + (N2 − 1)mV2 sin (2δ) sin2 δ − (N2 − 1)m

(
U + V cos2 δ

)
V sin (2δ)

=m
[
−2U + (N2 − 1)V sin2 δ − (N2 − 1)

(
U + V cos2 δ

)]
V sin (2δ)

=m
[
−2U + (N2 − 1)V sin2 δ − (N2 − 1)U − (N2 − 1)V cos2 δ

]
V sin (2δ)

=m
[
−(N2 + 1)U − (N2 − 1)V cos (2δ)

]
V sin (2δ) . (12)

∂2∆I
∂φ2

����
W=0
=

1
6

mZ2
[
∂W
∂φ

sin (2δ) + 2mW cos (2δ)
] ����
W=0
=

1
6

mZ2
[
∂W
∂φ

sin (2δ)
] ����
W=0

=
1
6

m2Z2 [
−(N2 + 1)U − (N2 − 1)V cos (2δ)

]
V sin2 (2δ)

=
1
6

m2Z2
[
−(N2 + 1)U +U

N2 sin2 δ − cos2 δ

sin2 δ cos2 δ
cos (2δ)

]
V sin2 (2δ)

=
1
6

m2Z2
[
−(N2 + 1)U +U

N2 sin2 δ − cos2 δ

sin2 δ cos2 δ

(
cos2 δ − sin2 δ

)]
V sin2 (2δ)

= − 1
6

m2Z2
[
cos2 δ

sin2 δ
+ N2 sin2 δ

cos2 δ

]
UV sin2 (2δ) . (13)

Under the Condition-II of W = 0, due to U < 0 and V > 0, hence ∂2∆I/∂φ2
��
W=0 > 0. Therefore,

in this situation, at the azimuthal locations determined by Condition-II of W = 0, the filaments
can never be produced.
Subcase–(ii) of β > 1/3 corresponds to V < 0. Under Condition-I of sin(2δ) = 0, with

δ = mφ+ δ0, we have φ(n) = nπ/2m− δ0/m (where n = 0, 1, ..., 4m− 1). We will now determine
the sign of ∂2∆I/∂φ2

��
sin(2δ)=0 from Eqs. (5) and (6). Instead, here we can directly use Eq. (10).

Under Condition-I of sin(2δ) = 0, due to U < 0 and V < 0, hence ∂2∆I/∂φ2
��
sin(2δ)=0 > 0.

Therefore, in this situation, at the azimuthal locations determined by Condition-I of sin(2δ) = 0,
the filaments can never be produced.
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Subcase–(ii) of β > 1/3 corresponds to V < 0. Under Condition-I of W = 0, we now
determine the sign of ∂2∆I/∂φ2

��
sin(2δ)=0 from Eqs. (5) and (6). Instead, here we can directly use

Eq. (13). Under Condition-II of W = 0, due to U < 0 and V < 0, hence ∂2∆I/∂φ2
��
sin(2δ)=0 < 0.

Therefore, in this situation, at the azimuthal locations determined by Condition-II of W = 0, the
filaments can be produced.

We will now discuss the dependence of locations of filaments on the linear anisotropy N . For
Condition-II of W = 0, with Eq. (11), we have

W = 0⇒ −(N2 − 1)V = U
N2 sin2 δ − cos2 δ

sin2 δ cos2 δ
⇒ N2

cos2 δ
− 1

sin2 δ
=
−(N2 − 1)V

U
. (14)

(A) In the special case of N ≈ 1 (near linear isotropy), we obtain

1
cos2 δ

− 1
sin2 δ

≈ 0.

For instance, for RP-VOF with δ = φ (m = 1 and δ0 = 0), the filaments will occur at four locations
of φ ≈ π/4, 3π/4, 5π/4, 7π/4.
(B) When the linear anisotropy becomes into larger (N > 1), we have

N
cos2 δ

− 1
sin2 δ

< 0⇒ tan2 δ <
1
N
.

For instance, for RP-VOF with δ = φ (m = 1, δ0 = 0), the filaments will occur at four locations
of φ ≈ π/4− b, 3π/4+ b, 5π/4− b, 7π/4+ b (where b is a positive constant). This analytic result
is in good agreement with the numerical simulation shown in the last column of Fig. 8.

9. Plane wave analysis results

Here we will give in detail the plane wave analysis [7–9] for the filamentation of AV-LP-VOF
propagation in the nonlinear media.
The steady-state solutions of Eq. (3) can be taken in the form of stationary-wave solutions

ψo = Eo exp( jλoζ), (15a)
ψe = Ee exp( jλeζ), (15b)

where Eo and Ee are real and positive functions obeying the differential equations

−λoEo + ∇2
⊥Eo + B

[
|Eo |2 + β

(
2|Ee |2 + E2

e

E∗o
Eo

)]
Eo = 0, (16a)

−λeEe + N∇2
⊥Ee + NB

[
|Ee |2 + β

(
2|Eo |2 + E2

o

E∗e
Ee

)]
Ee = 0. (16b)

Such stationary-wave solutions exist provided that λo,e > 0, otherwise ψo,e and their space
derivatives decay to zero at infinity. The first-order perturbation solutions of ψo,e should be

ψo = [Eo + ε (υo + jωo)] exp( jλoζ), (17a)
ψe = [Ee + ε (υe + jωe)] exp( jλeζ), (17b)

where υo,e and ωo,e are real functions, and ε � 1. By linearizing Eq. (3a) and Eq. (3b), we
obtain the problems for υo,e and ωo,e as follows
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∂υo
∂ζ
= L0

oωo, (18a)

∂ωo

∂ζ
= −L1

oυo +

[
2BβEeEo

(
2 +

E∗o
Eo

)]
υe, (18b)

∂υe
∂ζ
= L0

eωe, (18c)

∂ωe

∂ζ
= −L1

eυe +

[
2NBβEoEe

(
2 +

E∗e
Ee

)]
υo . (18d)

where

L0
o = λo − ∇2

⊥ − B|Eo |2 − 2Bβ|Ee |2 − BβE2
e

E∗o
Eo
, (19a)

L0
e = λe − N∇2

⊥ − NB|Ee |2 − 2NBβ|Eo |2 − NBβE2
o

E∗e
Ee
, (19b)

L1
o = λo − ∇2

⊥ − 3B|Eo |2 − 2Bβ|Ee |2 − BβE2
e

E∗o
Eo
, (19c)

L1
e = λe − N∇2

⊥ − 3NB|Ee |2 − 2NBβ|Eo |2 − NBβE2
o

E∗e
Ee
. (19d)

In the present scope, we are rather interested by the instability of ring-shaped solutions. We
define ρ̄ as the mean radius of focal field ring, and assume Eo,e to be zero everywhere except for
in the vicinity of focal field ring. We evaluate the azimuthal-symmetry breaking from Eq. (3)
along the path s = ρ̄φ. Thus the Laplacian can be reduced to ∇2

⊥ = ρ̄
−2∂2/∂φ2. Under the plane

wave analysis, we consider the zeroth-order solutions as

ψo = Eo exp
{

jB
[
|Eo |2 + β

(
2|Ee |2 + E2

e

E∗o
Eo

)]
ζ

}
, (20a)

ψe = Ee exp
{

jNB
[
|Ee |2 + β

(
2|Eo |2 + E2

e

E∗e
Ee

)]
ζ

}
. (20b)

with

Eo = N cos δ, (21a)
Ee = sin δ, (21b)

where δ = mφ+δ0 (m is the topological charge and δ0 is the initial phase). Azimuthal perturbations
take the form of υ, ω ∼ cos(mφ) exp(γmζ) and they still obey Eq. (18). We obtain the coupled set
of equations

γ2
m,oυo =

m2

ρ̄2

(
2B|Eo |2 −

m2

ρ̄2

)
υo +

m2

ρ̄2

[
2BβEeEo

(
2 +

E∗o
Eo

)]
υe, (22a)

1
N2 γ

2
m,eυe =

m2

ρ̄2

(
2B|Ee |2 −

m2

ρ̄2

)
υe +

m2

ρ̄2

[
2BβEoEe

(
2 +

E∗e
Ee

)]
υo . (22b)

In particular, the azimuthal modulational instability (AMI) growth rates for the o, e components
satisfy γ2

m,o = γ
2
m,e/N2 = γ2

m (which originate from a simple argument of symmetry). With the
above equations governing υo and υe, we yield

γ2
m =

m2

ρ̄2

(
2 4± −

m2

ρ̄2

)
(23a)
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with

24± = B

(
|Eo |2 + |Ee |2

)
±

√(
|Eo |2 − |Ee |2

)2
+ (2βEoEe)2

(
2 +

E∗o
Eo

) (
2 +

E∗e
Ee

) . (23b)

Combination of Eq. (21) and Eq. (23), we can obtain

γ2
m =

m2

ρ̄2

{
B

[(
N2 cos2 δ + sin2 δ

)
+

√(
N2 cos2 δ − sin2 δ

)2
+ N2(3β)2 sin2(2δ)

]
− m2

ρ̄2

}
.

(24)
Here we also classify into three subcases: (i) β = 1/3, (ii) β = 0.292 < 1/3, (iii) β = 0.374 >

1/3. Based on Eq. (24), the detailed analytic results of γ2
m have been shown in Fig. 9. It should be

pointed out that γ2
m has been normalized by its maximum value. Without loss of generality, we

select RP-VOF for discussion. For the linear anisotropy, we consider the negative crystal (N > 1).
In order to determine the azimuthal locations of filaments, the key is to find the normalized
(γ2

m)max.
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Fig. 9. The normalized AMI growth rate of RP-VOF in different nonlinear media with (a)
N ≥ 1, β = 1/3; (b) N ≥ 1, β < 1/3; (c) N ≥ 1, β > 1/3

Subcase–(i) of β = 1/3 is shown in Fig. 9(a). When N = 1, this corresponds to the traditional
isotropic Kerr nonlinear medium, we have γm ≡ 1, implying that any azimuthal position is
equivalent or indistinguishable for any AV-LP-VOF. Therefore, any purely ideal AV-LP-VOF
can never produce the deterministic multiple filamentation. However, when N > 1, (γ2

m)max of
RP-VOF are located at φ = 0 and π, which originates from the axial-symmetry breaking caused
by the initial linear anisotropy.
Subcase–(ii) of β < 1/3 is shown in Fig. 9(b). When N = 1, (γ2

m)max of RP-VOF are located at
four azimuthal locations of φ = 0, π/2, π and 3π/2, which are owing to the nonlinear anisotropy
(β < 1/3). However, when N > 1, (γ2

m)max of RP-VOF are located at two azimuthal locations
of φ = 0 and π, which originate from the collaborative contribution of the linear and nonlinear
anisotropies to the axial-symmetry breaking. Clearly, the symmetry breaking caused by the
linear anisotropy (N > 1) results in that four (γ2

m)max of RP-VOF in the linear isotropic nonlinear
medium become into two (γ2

m)max in both linear and nonlinear anisotropic medium. In fact,
AV-LP-VOF will collapse into 2m deterministic filaments located at azimuthal locations of
φ(n) = nπ/m − δ0/m (where n = 0, 1, ..., 2m − 1), which are in completely agreement with both
the experimental results in the MgO:LiNbO3 crystal, the simulation results and the non-depletion
approximation analysis results.
Subcase–(iii) of β > 1/3 is shown in Fig. 9(c), when N = 1, this corresponds to the BaF2

crystal, (γ2
m)max located at four azimuthal locations of φ = π/4, 3π/4, 5π/4, 7π/4, which are
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corresponding to the four deterministic filaments; when N > 1, (γ2
m)max of RP-VOF will also

determine four filaments in the medium (N = 1.038, β > 1/3), which are approximately located
at the azimuthal locations of φ ≈ π/4 − b, 3π/4 + b, 5π/4 − b, 7π/4 + b (where b is a positive
constant, and b becomes larger as N increases). In other words, the locations of filaments depend
on the strength of linear anisotropy (the value of N), as demonstrated by the analytical result of
the case (for lager N = 1.1) are in good agreement with the numerical simulation shown in the
last column of Fig. 8.
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